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Identification of material parameters for continuum modeling of phase transformations

in multicomponent systems

Alex Umantsev

Department of Natural Sciences, Fayetteville State University, 1200 Murchison Road, Fayetteville, North Carolina 28301, USA

(Received 26 January 2006; published 5 January 2007)

The continuum (field theoretic) method has become the method of choice for multiscale structure-formation
modeling of very different phase transformations in the past decade. One of the challenges in application of the
method to transformations in real materials is to obtain the mesoscopic parameters, which characterize the
thermodynamic system of interest. Significant progress has been made in the case of pure systems; however,
one would like to know what changes need to be made in the case of binary or multicomponent systems. We
consider an exactly solvable case of the linear multicomponent system undergoing a phase transformation and
derive equations that relate parameters of the continuum method, like barrier height, gradient energy, and
relaxation coefficients, to the measurable quantities, like interface energy, interfacial thickness, and kinetic
coefficient. We find that the contribution of chemical interactions in the system can be expressed as the
renormalization of the barrier-height parameter of the continuum method and replacement of the latent heat
with the chemical modulus. Atomic-scale simulations data for a solid/liquid transition in a binary Cu-Ni system
were chosen for comparison with the theory and the fitting yields the estimates for the continuum-method
parameters. Analysis of the temperature dependence of the interfacial energy allowed us to shed light on the

magnitudes of the internal energy and entropy contributions into the solid/liquid interface.

DOI: 10.1103/PhysRevB.75.024202

I. INTRODUCTION

In the past decade the continuum (field theoretic) method
has become very popular in theoretical and computational
studies of very different phase transformations in materials.
The success of the method is due to its computational flex-
ibility and ability to transcend the constraints of spatial/
temporal scales, imposed by strictly microscopic or macro-
scopic methods, hence becoming a truly multiscale one.
Although phase transitions in materials are always associated
with sharp changes of properties, according to the Landau
theory,! they may be characterized by one or more coarse-
grained continuous variables, 7;,, commonly called order pa-
rameters, which take on specified values in the bulk phases.
If the transformation is accompanied by redistribution of
species, there will be another set of continuous (field) vari-
ables, the partial densities of different components,
P1.P2,P3,--., Which also characterize the free energy of the
material: F=F(7;,p;). The presence of interfaces makes our
system inhomogeneous, that is, there appear gradients of the
independent variables, densities, and order parameters. This
affects the free energy in two ways. First, it becomes a func-

tional over the entire system: F=] fd3x. Second, the density

of the free energy, f‘, becomes a function of the gradients
of the thermodynamic variables as well as variables
themselves,>

) 1 1
F=TulT5p) + A(Tspi ) + 5V pisci(T)'V pj+ S (DY 7).

(1)

We consider here the free energy density to be a function of
a single-order parameter in the so-called square-gradient ap-
proximation; f, is the free energy density of a-phase, the
Landau function Af reflects symmetries of « and B phases
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and thermodynamic properties of the transition between
them; {K,-j} is the symmetric matrix of the compositional gra-
dient free energy coefficients and « is the order-parameter
gradient free energy coefficient. The free energy of phases
and the gradient energy coefficients may be functions of tem-
perature and pressure. In this paper temperature will be con-
sidered uniform throughout the system but varying from one
situation to another; the pressure, however, will be consid-
ered constant for all situations.

If the system is set up away from equilibrium, it will be
evolving in the direction of the equilibrium state due to the
presence of the thermodynamic driving forces, which are ex-
pressed as the variational derivatives of the free energy with
respect to its variables. As the order parameters do not obey
any conservation constrains, their evolution equations are of
nonconservative type and are known as the time-dependent
Ginzburg-Landau equation (TDGLE):

dn__ [ oF
dr 7(57/)T @

Here and below d/dt means the substantial derivative, and 7y
is the relaxation coefficient, which sets the time scales of the
process.

As we pointed out above, the diffusional transformations
are characterized by another set of variables, densities p;,
which may also undergo changes together with the order
parameters. The fundamental difference between the former
and the latter is in the conservation constraints that the den-
sities must obey. This difference is translated into the differ-
ent type of evolution equations, that is, diffusion equations
where the mass fluxes are proportional to the chemical po-
tential gradients: J; V(SF/ 8p;). Then the diffusion equation
takes the form

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.75.024202

ALEX UMANTSEV

. —V{Miﬂ,pk, m-v %} G)
Here {M;} is the matrix of solute mobility coefficients. The
system of coupling diffusion-type equations, Egs. (2) and
(3), describes dynamics of the system.

A continuum method to study equilibrium properties of
interfaces in multicomponent systems was developed in Ref.
3. For the free energy density, Eq. (1), the equilibrium in the
heterogeneous system may be expressed by the following
equations:

KV27]=(7,7f; (4a)
Kijvzpj = 3p,f— Mis (4b)
Ldp;, dp; 1(d77)2
T.piym) = pipi= 5~ Kij—~ = K|~ | =const.
STopiom) = papi= 57 iy = 5 gy ) =0
(4c)

In Eq. (4b) w; are the chemical potentials; Eq. (4c) applies
only to one-dimensional (1D) systems, e.g., plane interfaces,
and the constant in this equation relates to the hydrostatic
pressure. Then, using a solution of Eq. (4c), the interfacial
energy of a plane interface may be expressed as follows:>*

B 2
0'=f {@Kijd—pl+ K(d_r]) }dx. (5)

o Ldx “dx dx
Here the integration covers not only the interfacial region but
extends over the contiguous bulk phases a and B also. The
condition of stability of homogeneous phases requires the
surface energy o to be positive.” Application of the matrix
theory to Eq. (5) yields that for the stability of phases all
eigenvalues of the matrix {«;;} and the order-parameter gra-
dient free energy coefficient x must be non-negative.?

The central point of the theory in Ref. 3 is the Gibbs
adsorption equation in the continuum representation. If tem-
perature 7 and chemical potentials w,; are taken as indepen-
dent variables, the Gibbs adsorption equation takes the fol-
lowing form:

do=-T{ar-TWdw,; 1=2,....n. (6)

Here F(Sl) is the relative surface entropy and Ffl) is the ad-
sorption of component / with respect to the component 1.
The free energy, Eq. (1), and the dynamic equations, Egs.
(2) and (3), contain two kinds of material parameters: bulk,
which characterize the free energy of equilibrium phases and
kinetic processes therein, and interfacial, which characterize
the transformation between the phases, e.g., the energy scale
of the Landau function, the gradient free energy coefficients,
k and «; s and the relaxation coefficient y. The former ones
may be easily obtained from the thermodynamic and kinetic
databases, e.g., Thermocalc/Dictra®; it is significantly more
difficult to obtain the latter ones. This presents one of the
challenges of the continuum method. The interfacial material
parameters may be either obtained from first-principles cal-
culations, bottom-up approach, or extracted from experi-
ments, real or numerical, top-to-bottom approach. For quan-
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titatively meaningful analysis of the microstructure one
needs to know the interfacial parameters as accurately as
possible, regardless of the fact that due to computational rea-
sons, numerical simulations usually cannot be conducted
with the realistic parameters. As known, in the case of a pure
system the interfacial parameters may be determined from
the data on the measurable quantities: equilibrium interfacial
energy, o, equilibrium interfacial thickness, A, and the ther-
mal kinetic coefficient, kT.2’4*5 One would like to know what
measures should be taken in order to identify the interfacial
parameters in binary or multicomponent systems. In this
case, for instance, there must be a solution thermodynamics
contribution into the interfacial energy; as far as the interfa-
cial thickness is concerned the very definition of this quantity
must be reconsidered.

A number of authors used the top-to-bottom approach to a
binary Cu-Ni system.%~'® Wheeler et al.® and Ahmad et al.”
assumed both phases (solid and liquid) to be ideal solutions
of their elements and all the measurable interfacial properties
of Cu, Ni, and the alloys of different compositions to be
equal. Kim et al.® introduced a binary alloy model which
treats the interfacial region as a mixture of solid and liquid
phases with the equilibrium concentrations but variable
fraction—a mushy-zone model of sorts. In this approach the
solution thermodynamics contribution into the interfacial en-
ergy vanishes due to the assumed equilibrium between the
phases. Granasy et al.’ took a different approach: they fixed
the parameters of the pure Cu and Ni separately and linearly
approximated in temperature the parameters for the alloy
system. Although the solution thermodynamics contribution
can be recovered in this heuristic approach in the form of
temperature dependence of the interfacial energy, the prob-
lem is that this temperature dependence may not match the
experimental data. Echebarria et al.'® introduced a dilute bi-
nary alloy model which allows an exact solution for the equi-
librium state. The assumptions of the model, however, make
it virtually a pure-material system and do not allow recover-
ing any temperature dependence of the interfacial energy
which usually appears in alloys.

It is the intention of this work to lay out a thermodynami-
cally self-consistent approach to the problem of identification
of material parameters for continuum modeling of phase
transformations in multicomponent systems. The main idea
of the approach is to formulate a reasonable thermodynamic
model of a binary or multicomponent alloy and obtain exact
expressions for the equilibrium thermodynamic functions,
like interfacial energy and thickness. Unfortunately, a very
popular ideal-solution model'! does not allow for an exact
solution. That is why in Sec. II we analyze a linear multi-
component system, introduced in Ref. 3, and apply this
model to a binary Cu-Ni system in Sec. III. We do not expect
real alloy systems to be linear; we expect, however, the lin-
earity to the first approximation to the real solution thermo-
dynamics. Then, the derived expressions for the interfacial
parameters may serve as the first approximations to the real
ones. This conjecture will be tested in Sec. III by comparing
the ideal solution model to the linear one.

Dynamics of phase transformations merits special consid-
eration. One can prove rigorously that when the continuum
(diffuse-interface) approach is applicable, the rate of motion
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of a plane boundary is proportional to the driving force—
deviation of the thermodynamic conditions on the boundary
from the equilibrium ones.>!? In case of pure substances the
driving force has been identified as the deviation of the in-
terface temperature from the equilibrium one and the speed
of the boundary is equal to: V=k(T—Tg). The stationary
plane-front solution can be matched to an experiment under
similar conditions and the experimentally measurable kinetic
coefficient k; can be related to the theoretical quantity, relax-
ation parameter y of Eq. (2),>713

Y=SAL (7)

Here L is the latent heat of the transformation.

The matching of the theoretical and experimental results
is more complicated in alloys: although it can be worked out
through the thermal kinetic coefficient, we believe that an-
other approach is sounder. According to this approach (see
Ref. 14 and references therein), the driving force is the de-
viation of the concentration in one of the phases from the
equilibrium value with the coefficient of proportionality be-
ing the solute kinetic coefficient k-, which needs to be re-
lated to the relaxation coefficient y. In Sec. IV a binary linear
model will be applied to a dynamical situation and the ex-
pression for the relaxation coefficient will be derived. The
conclusions will be drawn in Sec. V.

II. LINEAR MULTICOMPONENT SYSTEM

A simple model of a multicomponent system which still
has all the properties essential for phase transformations in
real materials was introduced in Ref. 3. The model was
called “linear,” with the conditions of linearity as follows:

Pf >f
f =0; f =0. (8)
Ip; 9 p; d py dT d p;

Similar to the ideal solution model,'! the linear model does
not allow for the ternary density interactions; however, dif-
ferent from the ideal model, the linear one does not allow for
the interactions of density and thermal modes, with the great-
est discrepancy between the two models near the pure-
substance boundaries.

For the linear multicomponent system the relative adsorp-
tions, FEI), vanish and the relative surface entropy takes the
form?

B 2
oL [ty axfanpl,
2J), ldx dT dx dT\dx

In the present paper a special consideration is made for
the linear system with vanishing compositional gradient free
energy coefficients, ;;=0. The author is not aware of any
material system where the estimates of separate composi-
tional and ordering contributions into the surface energy
were made. However, estimates of these contributions in dif-
ferent systems show that usually the ordering one (e.g.,
liquid/solid in Cu-Ni, 0=0.278 J/ m?, Ref. 19) is an order of
magnitude greater than the compositional one (e.g., spinodal
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decomposition in Ag-Al, 0=0.015 J/m?, Ref. 24). This fact
may justify consideration of a linear system with vanishing
compositional gradient free energy coefficients, x;;=0. Many
experimental and numerical techniques allow plotting varia-
tion of the concentration and order parameter across the in-
terface. As one can see from Egs. (4), the chemical and or-
dering length scales will coincide if «;;=0. Thus, comparison
of the length scales of the variations of the order parameter
and concentration provides a test for the magnitude of «;;.
Direct comparison of these coefficients will be also discussed
in Sec. III.

Comparison of Eq. (5) with Eq. (9) yields that for the
system with ;=0 the Gibbs adsorption equation, Eq. (6),
takes the form

do=——dT. (10)

Equation (10) can be easily integrated to yield
o =const - k(7). (11)

Thus, the linear multicomponent model with vanishing com-
positional gradient free energy coefficients turns out to be
exactly solvable. In the framework of the linear model the
relation between the interfacial energy and gradient energy
coefficient is independent of the details of the free energy
function, Eq. (1); the latter affects only the magnitude of the
constant of proportionality in Eq. (11).

One can show that under the conditions of linearity, Eq.
(8), the free energy density of a-phase in Eq. (1) can be
represented as follows:

1
FolT3p) = foo(T) + EPiNiij' (12)

where {N;} is a symmetric nonsingular matrix of
temperature-independent ~ binary-interaction  coefficients.
There is extensive literature on the type of Landau function
which should be used for the description of phase transitions
of specific kinds;!> however, only one definite constraint on
this function exists: it should have as many minima as there
are stable phases in the system. The function employed in the
present paper is the following:'®

1
AA(T;pim) = anz(n) +b(T;p)v(7)

w=n(l1-7; v=73-27
b=fa(T;p) = foT;py)-

For this function the condition of phase equilibrium, Eq.
(4a), yields that the values of the order parameters in bulk
phases, 7,=0 and 7g=1, are independent of the phase com-
position or temperature. The bulk phases are separated by the
free energy barrier, whose coordinate is 7'=1/2+3b/a. Pa-
rameter a characterizes the curvature of the “potential well”
and the free energy barrier height (if 5=0) while parameter b
characterizes the driving force of transformation if the sys-
tem is driven away from the equilibrium. The composition
and temperature dependence of the parameter b may be re-

(13)

a = const;
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vealed through the conditions of linearity, Eq. (8), imposed
on the Landau function, Eq. (13):

b=by(T) +b;p;; b;=const. (14)

Application of the conditions of chemical and mechanical
equilibrium of the bulk phases, Egs. (4b) and (4¢), to the free
energy, Egs. (1) and (12)-(14), yields the following relations:
Nij[Pj]=—bi§ (15a)

Niipja = i PjaPjp = 0;

[pi]Nij[pj]- (15b)

N | =

b0+bipi5=—r; r=

The quantities in square brackets are defined as [¢]= ¢(B)
—¢(a) and may be called the interfacial jump quantities. The
constraint of non-negative densities appears because of non-
singular behavior of the free energy at p;=0 [see Eq. (12)].
Notice that in the linear approximation p;, and p;z are func-
tions of temperature but [p;] is independent of temperature.
The quantity r is also temperature independent; it character-
izes the multicomponent phase diagram and may be called
the chemical modulus."” The latent heat of the linear system
has the following very simple expression:

p ) db,
L=\T—-1 =r- T—-. 1
{ T }l—f] r b() + AT ( SC)

Application of the condition of heterogeneous chemical
equilibrium, Eq. (4b), to the free energy, Egs. (1) and (12)-
(15), yields the following relation:

pi = Pia+ V() (16)

Then the condition of heterogeneous mechanical equilib-
rium, Eq. (4¢), takes the form

2
K(d_n) =aw’ +2rv(l - v). (17)

[For the details of the derivation of Eq. (17) see Appendix.]

To obtain the expression for o one can substitute Eq. (17)
into Eq. (5) and integrate it straightforwardly. However, to
elucidate the contribution of solution thermodynamics into
the surface energy, it is advantageous to notice that in the
domain 0=7n=1 the function 1/w varies rapidly and di-
verges at 7=0; 1, while the function H=v(1-v)/w*=(3
—27)(1+27) varies slowly between the values of 3 and 4.
Hence, according to Laplace’s theorem,'® for the purposes of
integration of Eq. (17), function H can be replaced by its
value at the peak points, H~H(0)=H(1)=3. Then Eq. (17)
may be replaced by its asymptotic equivalent

2
K(Z—Z) =(a+6r)w. (18)

This expression is practically identical to the case of elemen-
tal substances; the only difference is that the barrier-height
parameter a is renormalized to (a+6r). Then, from Eq. (5)

the interfacial energy can be found to have the following
expression:

PHYSICAL REVIEW B 75, 024202 (2007)

1l ———
a'=g\"K(a+6r). (19)

This relation is one of the two main results of the present
paper. It is consistent with the Gibbs adsorption equation,
Eq. (11), where const=(a+6r)/36.

Another quantity important for calculation of the param-
eters of the continuum method is the interfacial thickness, A,
the proper definition of which should be based on the length
scale of the order parameter variation. One can define the
interfacial thickness as A=|[#]|/max|dn/dx|,>>'3 which in
the case of a simple “tanh” solution corresponds to a “12-88”
interval. Then, from Eq. (18) it follows that the interfacial

thickness is
A=dy|——. (20)
a+6r

Expressions for o and A in Egs. (19) and (20) can be
resolved for a and «,

3
KZEO'A; a:6<4%—r>. (21)

As one can see from Eq. (21), compared to the case of el-
emental systems, the multicomponent interactions change the
expression for the barrier-height parameter a but do not
change the expression for «.

III. Cu-Ni BINARY SYSTEM

One of the best examples of a linear-solution system is a
liquid-solid transition in a binary Cu-Ni alloy, with the pri-
mary reason for the linearity being the similarity of the ele-
ments. In the case of a binary system it is more convenient to
use the mole fraction of one component, ¢=pc,/(PcutPNi)»
instead of the densities of both. As one can see from Eqgs.
(12), (14), and (15), in the linear-solution approximation the
free energies of the liquid (/) and solid (s) phases are the
parabolic functions of concentration c:

1 2
fl(s)(T;c) :fl(s),O(T) +fl(s),lc + Efl(x),Zc P O0=c=1 B

(22)

where the second-order coefficients are equal: f;,=f,=f>.
Then application of Eq. (15) to the free energy, Egs. (1) and
(22), yield

) o D Tl
Topn A T 26 AT
_ I DYoo Lil
0 - CbCS — 1’ - 2f2[C] - 2f2 (23)

Notice that in the linear approximation the liquidus C; and
solidus C; are functions of temperature, while the concentra-
tion range [C] is temperature independent. The phase dia-
gram of the linear system envelops the phase diagram of the
ideal solution.!' In the phase space of heterogeneous states

024202-4



IDENTIFICATION OF MATERIAL PARAMETERS FOR...

0 &

free energy density f (eV/nm3)
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FIG. 1. (Color online) Fitting of the free energy densities of the
solid and liquid phases of Cu-Ni alloy at 7=1750 K into the
second-order polynomial forms. Crosses are the numerical simula-
tion data from Refs. 19 and 20, solid lines are the polynomial
approximation.

the equilibrium concentrations, C; and C,, are connected by
the trajectory of the representative point, Egs. (16) and (18).
For a binary system projection of this trajectory on the (c, )
plane takes the form

C=C+[Clu(n) (24)

The equilibrium trajectory crosses the barrier at the saddle
point (c*, %) described by

o CtC _a (1 ) 25)
T2 Tapla\2”

On the trajectory of the representative point [Egs. (18) and
(24)], the free energy density of the system [Eq. (1)] can be

PHYSICAL REVIEW B 75, 024202 (2007)

expressed as the function of the order parameter only,

F=FAT;C) + (fig + HLO)CIu(m) + (a + 6r) ().
(26)

Asta et al.'® have conducted atomic-scale simulations of
the liquid-solid transition in Cu-Ni systems and calculated
the interfacial free energy at a temperature of 1750 K, which
is inside the two-phase range. For the purposes of the present
analysis it would have been advantageous to have the simu-
lation data at several different temperatures; unfortunately, so
far the simulations have been finished only for 7=1750 K.
Below we will compare their numerical results with the the-
oretical model developed in the present paper in order to
extract the parameters of the continuum method. The free
energies of the phases were fitted into the polynomial forms,
Eq. (22), in the range 0.01 <c¢<<0.2 (see Fig. 1). In order to
obtain the free energy densities, f), the molar Gibbs free
energies used for simulations of liquid/solid equilibrium in
Cu-Ni system'??% were multiplied by respective densities of
the solid and liquid phases at the temperature of the
simulations;'® the fitting results are shown in Table 1. The
difference between f;, and f;, was less than 0.4%, which
supported the application of the linear-solution model to the
Cu-Ni system. The geometric average value, f>=(f2fs2).
was used for all the calculations of the parameters. The in-
terfacial thickness A was determined from the concentration
profile provided in Ref. 19 instead of the order-parameter
profile. Comparison with the latter is desirable but was not
available. Figure 2 shows the phase diagram of the Cu-Ni
system for small concentrations of Cu, as represented by the
linear-solution model [color lines, Eq. (23)].

There are many different ways that one can use the pa-
rameters of the continuum method. One way is to apply them
to real-material multiscale structure-formation modeling. An-
other way to use the parameters is to gain better understand-
ing of the physics of the transformation process itself. Figure
3 is the (c, 7)-plane of the phase space; the trajectory of the
representative point of the equilibrium state, Eq. (24), is de-
picted in Fig. 3 together with the coordinates of the free
energy barrier, Eq. (25). Also in Fig. 3 is depicted the free

TABLE 1. Fitting of the simulation data for the solid/liquid Cu-Ni system at 7=1750 K into the theoretical model.

Simulation
Solid phase Liquid phase Interface
Jo S f2 Jo hi f2 g A
eV/nm? eV/nm> m.f. eV/nm? m.f.2 eV/nm’ eV/nm> m.f. eV/nm? m.f.2 eV/nm? nm
-0.4127 -24.476 60.0093 0.18282 -30.706 59.8262 1.792 0.75
Theory
Solid Liquid Interface
C C r a K K, Ky
m.f m.f eV/nm? eV/nm? eV/nm eV/nm eV/nm K
0.0436 0.1476 0.324 54.7 2.02 -3.05 —-0.00290
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FIG. 2. (Color online) The liquidus (C;) and solidus (C) lines
and the square of the interfacial energy (o°) versus temperature.
Crosses represent the experimental (real or numerical) results; the
lines are the results of fitting into the linear approximation. The
phase boundary C;=0 was added because the linear-solution free
energy is not singular at c=0. Dashed lines—solidus and liquidus of
the ideal-solution model.

energy density, f, along the equilibrium trajectory as a func-
tion of the order parameter [Eq. (26)]. The representative
point crosses the barrier practically in the middle of the tra-
jectory; this makes the Cu-Ni alloy system very similar to a
one-component substance. However, contrary to a one-
component system, the free energy density does not peak at

020 — : —4

0.12

' barrier

I
I

0.08 —

free energy density ?—fl [ev/nms]

concentration ¢ (mol. frac. Cu)
L

0.04 —
solid

000 \ | { o

0.0 0.2 0.4 0.6 0.8 1.0
order parameter N

FIG. 3. (Color online) Phase space of the solid/liquid interfacial
region in Cu-Ni system. Solid line 1,—equilibrium trajectory of the
representative point of the system; solid line 2, the free energy
density along the equilibrium trajectory as a function of the order
parameter; dashed line, position of the free energy barrier.
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the point where the trajectory crosses the barrier.

From Table I one can see that the chemical contribution,
6r, to the barrier-height parameter, a, in the solid/liquid
Cu-Ni system is only 3.6%. The gradient free energy coeffi-
cient for this system was found to be xk=3.22X107° J/m,
which is approximately an order of magnitude greater than
the compositional gradient free energy coefficient x..=~5.0
X 107! J/m [rescaled for the concentration gradients in Eq.
(5)], estimated for coherent interfaces in fcc-based Ag-Al
alloys.?* This may also justify the approximation of K;;=0
used in the present article.

Equation (11) reveals the temperature dependence of the
gradient energy coefficient «; this may shed light on the
thermodynamic nature of the interactions that lead to the
formation of the interface. For the purposes of comparing
with the theory, the interfacial energies of elemental Ni and
Cu were included. The interatomic potentials used for the
simulations'” predict a melting point for pure Ni of 1820 K
instead of the experimental value of 1728 K and the interfa-
cial energy oyn;=0.310 J/m?, which is also higher than the
value observed experimentally, 0.255 J/m?.2! The melting
point and interfacial energy of elemental Cu were interpo-
lated from the experimental results?>' because the simulations
in Ref. 19 were not performed for elemental Cu; the interpo-
lated values were T,=1428 K and 0¢,=0.215 J/m>. The
square of the interfacial energy was plotted in Fig. 2 as a
function of temperature; it fitted into a linear function of
temperature with the standard deviation less than 5%. The
fitting into a linear function of temperature allowed us to
separate the internal energy and entropy contributions into
the gradient free energy: k= «,—Tk,. Both coefficients turned
out to be negative, x,=—4.88X1071J/m and «,=-4.64
X 1073 J/(m K) (see Table I). This means that the internal
energy effect is to create more interfaces while the entropy
effect is to limit the interfacial area and the entropic effect
prevails. This conclusion is in qualitative agreement with
that of Spaepen?? that the main contribution into the solid/
liquid interface tension comes from the entropy decrease due
to ordering of liquid near the interface. The latter effect has
been recently observed experimentally by Oh et al.??

We realize that the linear chemical approximation does
not apply to all alloy systems. Another model, an ideal solu-
tion, is often invoked to describe thermodynamic properties
of alloys. In Fig. 2, together with the linear-solution model,
is shown the phase diagrams of Cu-Ni system in the ideal-
solution approximation (dashed lines): the linear-solution
phase diagram envelopes that of the ideal-solution one with
the strongest discrepancy near the one-component boundary.
In order to verify applicability of our main result, Eq. (19), to
an ideal solution, we numerically calculated the surface en-
ergies of ideal alloys with properties similar to the Cu-Ni
system, at different temperatures inside the two-phase region
for different magnitudes of the parameter a/RT,, where R
is the gas constant and A is the low-melting-point compo-
nent. Figure 4 depicts the quantity C]=(360’l2d/K
—a)/I3[CTI(f4f4,), which is equal to unity for the linear
system. The numerical data show that ¢— 1.2 for a/RT,
— 0 when the temperature is not approaching the melting
points of pure components of the alloy. The discrepancies
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FIG. 4. (Color online) Comparison of the ideal solution and
linear chemical models. The quantity ¢ (for the definition see the
text) versus temperature for different magnitudes of a/RT),: 1, 0.05;
2, 0.1; 3, 0.5; 4, 1.0; and 5, 5.0. For the linear system g=1 (red
line).

near the melting points can be easily explained by very dif-
ferent behavior of the models around these temperatures [see
Eq. (23) and the discussion below]. Discrepancies of the
models at large ratios of a/RT, may be explained by the fact
that in this case the representative point of the system
“spends more time” in the chemical regions of the phase
space, that is close to =0 or 1, and thus is more dependent
on the chemical properties of the free energy.

IV. ORDER PARAMETER RELAXATION COEFFICIENT

As it was explained in the Introduction, finding dynamical
parameters of the continuum method presents a more diffi-
cult problem than that for the equilibrium ones. Here we
intend to identify the relaxation coefficient of order param-
eter evolution [see Eq. (2)] by relating it to the experimen-
tally measurable solute kinetic coefficient. Therefore we con-
sider stationary motion of a flat interface in an isothermal
binary mixture.'? Such a situation is described by evolution
equations, Egs. (2) and (3), which in the stationary situation
are reduced to

&y Vdy_if

= 27

Kdu2 ydu dny @7
d{ad

M(n)—(—f) + Ve = const (28)
du\ dc

where the diffusion equation, Eq. (3), has been integrated
once. We seek the simultaneous solution of the system of
equations, Egs. (27) and (28), in the form
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dy__4
-5 (m)
c=c+(c;=—c)u(n), (29)

where 6 is an undetermined thickness of the moving inter-
face, and ¢, ¢, are the far-field concentrations in the liquid
and solid phases, respectively. Such solution cannot be ex-
pected as a long-time dynamical regime in a system with
fixed amounts of components, because it does not obey the
mass conservation constraint. However, one can expect such
solution to apply to initial stages of transformations, like in
Ref. 14.

Substitution of the solution, Egs. (29), into Eq. (27) yields
the following solvability conditions:

£o 16k )
a+3f[Cl(c,—c) '

(30)

V=250 Cliler~ C) + e~ €} (31)

To obtain these conditions we used the same approximation,
H(7) =3, as in the derivation of Eq. (18). Equation (28) can
be satisfied simultaneously with Eq. (27) if the solute mobil-
ity coefficient is taken in the following form:

1+2
M=m U
7

This means that the diffusion of solute in the liquid phase is
infinitely fast while that in the solid phase is finite, with the
diffusion coefficient in the solid being equal to D,=3mf,.
This assumption is reasonable for the solid/liquid Cu-Ni sys-
tem, where D;/D,=10°" Then the constant in Eq. (28) can
be identified as Vc, and we obtain the third solvability con-
dition,

(32)

¢ )= ——— (33)

Equation (33) establishes the relation between the concentra-
tions in the solid and liquid phases around a moving inter-
face, that is, the kinetic partition coefficient. This condition
shows that there is a possibility of solute trapping if the
diffusion length in the solid, D,/V, is comparable to the
thickness of the moving interface 8. Solute trapping, how-
ever, is not a primary concern in this paper and will not be
dwelled on any further.

Substitution of Eq. (33) into Eq. (30) yields the expres-
sion for the thickness of the moving interface,

3VAr )
16D/’

o= A(l + (34)
Equation (34) shows that the thickness of a moving interface
is only insignificantly different from that of the equilibrium
one, A. In the derivation of this equation an approximation
was used a>r, which is true for the Cu-Ni system (see
Table I).

024202-7



ALEX UMANTSEV

Substitution of Eq. (33) into Eq. (31) yields the expres-
sion for the interfacial velocity, which, to the first order of
(VA/D,), takes the following form:

3
V= EJ’Afz[C](Cz— C). (35)

Equation (35) identifies the deviation of the concentration in
the liquid in front of the moving interface from its equilib-
rium value, (¢;—C;), as the “driving force” for interface mo-
tion [V=ke(c;—C)), cf. Appendix II in Ref. 14] and estab-
lishes the relation between the solute kinetic coefficient k.
and the relaxation coefficient v,

ke

SETVATa) (36)

Y
This relation is the second main result of the present publi-
cation. Direct experimental measurements of the solute ki-
netic coefficients in binary alloys are still rare due to many
technical difficulties. One possible experimental technique
was realized in Ref. 14 for Cu-Sn systems. The major differ-
ence between the Cu-Sn and Cu-Ni systems is the precipita-
tion and growth of an intermetallic phase in the former one.
If we disregard this complication, because the intermetallic
layer is very thin, and use the kinetic coefficient obtained in
that work, k-=1 mm/s m.f., as an estimate for the Cu-Ni
system, then the relaxation coefficient comes down to vy
=1.37X10° nm3/eVs (8.6X10™* m3/Js). The numerical
value of the relaxation coefficient allows us to estimate the
time scale of the relaxation process in the Cu-Ni system: 7
=1/(ya)=107" s. This time scale may be compared with the
time scale of the diffusional process: D,/ V*. The comparison
yields the crossover speed, Ve=+/(D,/7)=10 cm/s, which
separates the processes controlled by diffusion (V< V) from
the processes controlled by the interface kinetics (V>V,).
In addition to presenting an expression for the relaxation
coefficient through the solute kinetic coefficient, Eq. (36)
establishes a connection between the thermodynamics of a
one-component and multicomponent systems. Comparison
of Eq. (36) with Eq. (7) shows that the chemical modulus r
of alloys is analogous to the latent heat of pure materials.

V. CONCLUSIONS

In conclusion, we considered an exactly solvable case of
the linear binary and multicomponent systems undergoing a
phase transformation and derived equations that relate pa-
rameters of the continuum method, like barrier-height a,
gradient-energy «, and relaxation coefficient 7, to the mea-
surable quantities, like interfacial energy, interfacial thick-
ness, and kinetic coefficient. We found that the contribution
of the chemical interactions in the system can be expressed

PHYSICAL REVIEW B 75, 024202 (2007)

as the renormalization of the barrier-height parameter of the
continuum method and replacement of the latent heat with
the chemical modulus. Atomic-scale simulations data for a
solid/liquid transition in a binary Cu-Ni system were chosen
for comparison with the theory. The fitting results allowed
us to estimate the continuum-method parameters: a
=547 eV/nm?, k=2.015 eV/nm, y=137X 10° nm3/eV s,
which can be used for multiscale structure-formation model-
ing. Comparison of the transition barrier height with the
chemical modulus of the Cu-Ni system shows that this alloy
behaves mostly like a one-component system. Analysis of
the temperature dependence of the interfacial energy allowed
us to shed light on the magnitudes of the internal energy and
entropy contributions into the solid/liquid interface.
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APPENDIX

Application of Eq. (4¢c) to the free energy, Egs. (1) and
(12), yields the following relation:
k(dn)\? 1 1
E(E) =Af(T;pm) + EPiNiij - EpiaNijpja — 1i(pi = Pia)

1
=Af(T;p;m) + E(F’i = Pia)Nij(p; = pja)- (A1)

To obtain the last expression in Eq. (A1) we used Egs. (15)
from the text. Substitution of Eq. (16) into Eq. (A1) yields

kldn)'_ o
2(dx> =Af(T;p;,m) + 1r1°.

With the help of Eq. (16), the Landau function, Egs. (13) and
(14), can be written as follows:

(A2)

a
Af(T;pim) = sz +{bg + bipiﬁ =blpJ(1=v)jv. (A3)
Substitution of Eq. (15b) into Eq. (A3) yields
Af(Tspim) = S+ (1 =20). (A4)

Substitution of Eq. (A4) into Eq. (A2) yields Eq. (17) in the
text.
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