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Particular solutions to
the Tzitzeica curve equation

Nicoleta B̂ılă and Michael Eni ∗

Abstract

The aim of this paper is to study a particular reduction case of
the nonlinear ordinary differential equation that defines a Tzitzeica
curve. It is shown that the Tzitzeica curve equation can be reduced
to an auxiliary third order linear homogeneous ordinary differential
equation with constant coefficients for the defining functions of the
curve and a linear equation for the equation’s constant. Consequently,
it can be proven that any three linearly independent solutions of the
auxiliary ordinary differential equation define a Tzitzeica curve.

Key-words: Nonlinear ordinary differential equation, Tzitzeica curves
Subject Classification: 34A05, 34A30, 34A34, 53A04, 53A15

1 Introduction

A Tzitzeica curve is a spatial curve for which the ratio of its torsion τ and
the square of the distance d from the origin to the osculating plane at any
arbitrary point of the curve is constant, i.e.,

τ

d2
= α, (1)

where α 6= 0 is a real constant. The curves with the property (1) have been
introduced in 1911 by the Romanian mathematician Gheorghe Tzitzeica [5]
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as a consequence of his work on a particular class of surfaces that also carries
his name today. A Tzitzeica surface has the property that the ratio of the
surface’s Gaussian curvature and the fourth power of the distance from the
origin to the tangent plane at any arbitrary point of the surface is constant
[6]. It may be shown that the asymptotic lines on any Tzitzeica surface
with negative Gaussian curvature are Tzitzeica curves. One of the most
intriguing properties of the Tzitzeica’s geometric objects is their invariance
under centro-affine transformations.

Although the Tzitzeica curves have occurred occasionally in the mathe-
matics literature, their related ordinary differential equation (ODE) given by
(4) has not been studied in detail so far. Moreover, there are known only a
few examples of Tzitzeica curves whose defining functions are given explic-
itly (see, for instance, [1] and [3]). Therefore, our work is motivated by the
aim of finding new closed-form solutions of the Tzitzeica curve equation. We
explore an interesting case when the defining functions of a Tzitzeica curve
are linearly independent and satisfy the third order linear homogeneous ODE
with constant coefficients (7). We show that, in this situation, (7) reduces
to (11) and, in addition, the Tzitzeica curve equation turns into (13) which
may be seen as a linear equation for the constant α. As a consequence, we
obtain new Tzitzeica curves (see Cases 1,2, and 3 along with the examples
in Section 2). To the best of our knowledge, these representations of the
Tzitzeica curves do not appear in literature.

The structure of the paper is the following. The Tzitzeica curve equation
is derived in Section 2. In Section 3, a specific reduction case is analyzed and
the resulting solutions are presented. Section 4 is reserved for conclusions.

2 The Tzitzeica curve equation

Let
r(t) = (x(t), y(t), z(t)) , (2)

be a regular space curve given parametrically with nonzero curvature k, where
t ∈ I ⊂ R. The torsion of the curve is given by

τ(t) =
(r′(t), r′′(t), r′′′(t))

||r′(t)× r′′(t)||2
,

where the primes denote the derivatives with respect to t, the vector r′ × r′′

is the cross product of the tangent vector r′ and the acceleration vector r′′,
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||r′(t)× r′′(t)|| is the magnitude of r′ × r′′, and

(r′(t), r′′(t), r′′′(t)) =

∣∣∣∣∣∣
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)
x′′′(t) y′′′(t) z′′′(t)

∣∣∣∣∣∣
is the mixed product (or the scalar triple product) of vectors r′, r′′, and r′′′

(see, for instance, [4], page 48). Assume that (2) has a nonzero torsion. On
the other hand, the osculating plane at an arbitrary point of the curve is
given in the determinant form as∣∣∣∣∣∣

x− x(t) y − y(t) z − z(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣ = 0.

The osculating plane is generated by the unit tangent vector T(t) and the
unit normal vector N(t) at each point of the curve or, equivalently, by the
tangent vector r′(t) and the acceleration vector r′′(t). It may be shown that
the distance from the origin to the osculating plane of the curve is

d2 =
1

||r′(t)× r′′(t)||2

∣∣∣∣∣∣
x(t) y(t) z(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣
2

.

After substituting the torsion τ and the expression d2 into (1), we obtain the
following equation∣∣∣∣∣∣

x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)
x′′′(t) y′′′(t) z′′′(t)

∣∣∣∣∣∣ = α

∣∣∣∣∣∣
x(t) y(t) z(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣
2

(3)

which may also be written as

az′′′ − a′z′′ + bz′ = α (cz′′ − c′z′ + az)
2
, (4)

where

a = x′y′′ − x′′y′, b = x′′y′′′ − x′′′y′′, and c = xy′ − x′y

are functions of the curve parameter t.

Proposition. A space curve (2) is a Tzitzeica curve if and only if its defining
functions x, y, and z satisfy the nonlinear ODE (4).

Definition. The nonlinear ODE (4) is called the Tzitzeica curve equation.
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3 A special case of reduction for the Tzitzeica

curve equation

Note that the equation (4) may be written in terms of Wronskians as follows

W (x′, y′, z′)(t) = α [W (x, y, z)(t)]2 , (5)

where

W (x, y, z)(t) =

∣∣∣∣∣∣
x(t) y(t) z(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣ .
This means that the Wronskian W (x′, y′, z′)(t) and the square of the Wron-
skian W (x, y, z)(t) are directly proportional. On the other hand, since a
determinant is invariant under a cyclic permutation of its rows, the left-hand
side of the equation (4) may be reformulated as below∣∣∣∣∣∣

x′′′(t) y′′′(t) z′′′(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣ = α

∣∣∣∣∣∣
x(t) y(t) z(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣
2

. (6)

Observe that if the functions x, y, and z satisfy the equations

x′′′ + βx′′ + γx′ + δx = 0,
y′′′ + βy′′ + γy′ + δy = 0,
z′′′ + βz′′ + γz′ + δz = 0,

(7)

where β, γ, and δ 6= 0 are real numbers, the two determinants in (6) are equal
(here we consider δ 6= 0 because the curve’s torsion should be nonzero). The
above equations (7) mean that the functions x, y, and z are solutions of the
third order linear homogeneous ODE with constant coefficients

u′′′ + βu′′ + γu′ + δu = 0, (8)

in the unknown function u = u(t), where β, γ, and δ are real numbers
with δ 6= 0. Moreover, the solutions x, y, and z are chosen such that they
are linearly independent (this restriction is related to the condition that the
curve’s torsion is nonzero). Next, the substitution of (7) into (6) implies

−δ

∣∣∣∣∣∣
x(t) y(t) z(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣ = α

∣∣∣∣∣∣
x(t) y(t) z(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣
2

,
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or, equivalently,
−δW (t) = α[W (t)]2,

for any t ∈ I, where we denote W (t) = W (x, y, z)(t). Since W (t) is nonzero
on the interval I (the functions x, y, and z are assumed to be linearly inde-
pendent), the solution of the above equation is

W (t) = − δ
α
. (9)

Hence, the Tzitzeica curve equation has been reduced to the ODEs (8) and
(9). By applying the Abel’s differential equation identity that relates the
derivative of the Wronskian of three homogeneous solutions of a third-order
linear ODE and one of the coefficients of the original ODE (see, for example,
[2], page 225), we get

W ′(t) = −βW (t). (10)

After replacing (9) into (10) and taking into account that W (t) is nonzero,
we obtain β = 0. Thus, the linear ODE (8) turns into

u′′′ + γu′ + δu = 0. (11)

In what follows, we solve the differential equation (11) and discuss its solu-
tions in each case. We start with the characteristic equation related to (11)
which is given by

v3 + γv + δ = 0. (12)

Notice that v1, v2, and v3 are nonzero because δ 6= 0 and the sum of the roots
is zero: v1 + v2 + v3 = 0 (the coefficient of v2 is zero). In the same time, the
equation (9) to which the Tzitzeica curve equation is reduced, may be seen
as a linear equation for α, i.e.,

α = − δ

W
. (13)

The following cases may occur:

Case 1. The equation (12) has three real nonzero simple roots whose sum is
zero: v1 6= 0, v2 6= 0, v1, and v3 = −v1 − v2. Since v3 6= v1 and v3 6= v2, it
follows that v2 6= −2v1 and v2 6= −v1/2. In this case, the general solution of
the ODE (11) is

u(t) = C1 exp(v1t) + C2 exp(v2t) + C3 exp[−(v1 + v2)t], t ∈ R, (14)
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where C1, C2, and C3 are real constants. Since each centro-affine transforma-
tion of a Tzitzeica curve is also a Tzitzeica curve, without loss of generality, it
is enough to consider x, y, and z as the simplest fundamental set of solutions
of the differential equation (11). Thus, the following functions

x(t) = exp(v1t), y(t) = exp(v2t), z(t) = exp[−(v1 + v2)t] (15)

define a Tzitzeica curve. In this case, the Wronskian of the functions x, y,
and z is a nonzero constant given by

W (t) = (v2 − v1)(2v1 + v2)(v1 + 2v2).

From the equation (13), we find that

α =
v1v2(v1 + v2)

(v2 − v1)(2v1 + v2)(v1 + 2v2)
.

Example 1. Consider the ODE u′′′−7u′+6u = 0 whose characteristic equation
has the roots v1 = 1, v2 = 2, and v3 = −3. After replacing them into (15),
we obtain the following Tzitzeica curve

x(t) = exp(t), y(t) = exp(2t), z(t) = exp(−3t) (16)

whose graph is given in Figure 1.

Case 2. Assume that equation (12) has a double real nonzero root v1 = v2
and a simple real nonzero root v3. Since the sum of the roots is zero, we have
v3 = −2v1. It follows that the general solution of the ODE (11) is given by

u(t) = C1 exp(v1t) + C2t exp(v1t) + C3 exp(−2v1t), (17)

where C1, C2, and C3 are real constants. Therefore,

x(t) = exp(v1t), y(t) = t exp(v1t), z(t) = exp(−2v1t) (18)

define a Tzitzeica curve. The Wronskian of the functions in (18) is W (t) =
9v21 6= 0. The resulting equation (13) implies that the equation’s constant
may be chosen as α = 2v1/9.

Example 2. Consider the differential equation u′′′ − 3u′ + 2u = 0. In this
case, the characteristic equation has the roots v1 = v2 = 1 and v3 = −2. By
replacing these numbers in (18), we obtain the following Tzitzeica curve

x(t) = exp(t), y(t) = t exp(t), z(t) = exp(−2t) (19)
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Figure 1: The Tzitzeica curves defined by (16) and, respectively, (19).

whose graphical representation is given in Figure 1.

Case 3. The equation (12) has two nonzero complex conjugate roots v1,2 =
m± in, where m 6= 0 and n are real numbers and a simple real nonzero root
v3. Since the sum of the roots is zero, we have that v3 = −2m. The general
solution of the equation (11) is

u(t) = C1 exp(mt) cos(nt) + C2 exp(mt) sin(nt) + C1 exp(−2mt), (20)

where C1, C2, and C3 are real constants. Therefore, the functions

x(t) = exp(mt) cos(nt), y(t) = exp(mt) sin(nt), z(t) = exp(−2mt) (21)

define a Tzitzeica curve. The Wronskian of the above functions is W (t) =
n(9m2 + n2). Next, we use the remaining equation (13) to determine equa-
tion’s constant, that is,

α =
2m(m2 + n2)

n(9m2 + n2)
.

Example 3. Consider the ODE u′′′ − u = 0. The roots of the characteristic
equation are v1 = 1 and v2,3 = −1/2± i

√
3/2. The relations (21) imply

x(t) = exp

(
− t

2

)
cos

(√
3

2
t

)
, y(t) = exp

(
− t

2

)
sin

(√
3

2
t

)
, z(t) = exp(t),

(22)
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where t ∈ R. The graph of this Tzitzeica curve is given in Figure 2.
Notice that the case when the equation (12) has a triple real root v1 =

v2 = v3 does not lead to any Tzitzeica curve. Indeed, since the sum of the
roots is zero, one obtains v1 = 0 and this is in contradiction with δ 6= 0.

We have shown the following result:

Theorem. Any linearly independent solutions of the third order linear ho-
mogeneous ODE with constant coefficients (11) define a Tzitzeica curve equa-
tion. The corresponding families of Tzitzeica curves are given by (15), (18),
and (21).

4 Conclusion

The Tzitzeica curve equation (4) may be regarded as a nonlinear ODE in
one of the unknown functions, say z, with x and y arbitrary functions or as
a nonlinear ODE in all three unknown functions x, y, and z. In both cases,
it is difficult to find closed-form solutions, even with computer assistance. In
this paper, we have discussed a particular case that follows from the obser-
vation that the Tzitzeica curve equation can be expressed in terms of two
Wronskians (5). This key remark led us to the assumption that the defining
functions of a Tzitzeica curve satisfy a third order linear homogeneous ODE.
For simplicity, we have discussed the case when x, y, and z satisfy a linear
ODE with constant coefficients but it would be interesting in a future study to
analyze also the case when the auxiliary linear ODE has variable coefficients.
In Section 3, we have shown that if the defining functions of a Tzitzeica curve
are three linearly independent solutions of a linear homogeneous ODE with
constant coefficients (8), then in this equation the coefficient of u′′ must be
zero. Moreover, the constant α may be determined from the linear equation
(13) that represents the corresponding reduced form of the Tzitzeica curve
equation. Here, we should specify that the resulting linear equation (13) may
also be regarded as a restriction on the roots v1, v2, and v3. For instance,
if α is fixed and given, we can find v1 in terms of v2 and α (in Case 1),
v1 = 9α/2 (in Case 2), and m in terms of n and α (in Case 3). We also
provide the new families of closed-form solutions that are obtained in each
situation. Since any centro-affine transformation of a Tzitzeica curve is also a
Tzitzeica curve, one can use this property to construct new Tzitzeica curves
from the known ones. That is, given a Tzitzeica curve and a centro-affine
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Figure 2: The Tzitzeica curve (22) and its deformation by the affine trans-
formation x̃ = x, ỹ = 10y, and z̃ = 10z.

transformation [x, y, z]T → [x̃, ỹ, z̃]T = A[x, y, z]T , where A is a 3×3 -matrix
with det(A) 6= 0, the resulting curve defined by x̃, ỹ, and z̃ is also a Tzitzeica
curve. For instance, in Figure 2, a simple example of a deformation of the
Tzitzeica curve (22) under the centro-affine transformation x̃ = x, ỹ = 10y,
and z̃ = 10z is presented. The original curve corresponds to α = 2

√
3/9

while the new curve has α =
√

3/450. It may be shown that under a cen-
tral equi-affine transformation, i.e., [x, y, z]T → [x̃, ỹ, z̃]T = A[x, y, z]T , with
det(A) = 1, the original and the transformed curves correspond to the same
constant α.
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