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ABSTRACT  14 

 15 

Aims: To construct a clinically plausible mathematical model of the patho-physiological dynamics of HIV-
1 induced AIDS during the acute and chronic phases which  incorporates the interactions between 
uninfected CD4+ T cells, HIV-1 infected CD4+ T cells, HIV-1 virions in the blood plasma, and specific 
cytotoxic CD8+ T cells. In particular, the model describes quantitatively the time evolution of AIDS in the 
patient during the acute phase and the asymptomatic chronic clinical latency phase and elucidates the 
effect of latent HIV-1 reservoirs on the prognosis of AIDS. The major objective is to derive mathematical 
criteria depicting the necessary and sufficient conditions under which the HIV-1 virions can be maintained 
definitely at the subclinical viral blood plasma level such that the HIV-1 seropositive person does not 
develop full-blown AIDS.. 

Study design: The model is based on contemporary published patho-physiological data on acute and 
clinical chronic phase HIV-1 induced AIDS. These data are meticulously condensed into a clinically 
plausible four compartmental mathematical model that incorporates the dynamics and interactions 
between non-HIV-1 infected CD4+ T lymphocytes. HiV-1 infected lymphocytes, free HIV-1 virions in the 
blood plasma, and HIV-1 specific cytotoxic CD8+ T lymphocytes. The relevant stoichiometric interaction 
rate constants, apoptotic  rate constants ,rate constats for viral recruitment from latent reservoirs, and 
other relevant parameters are clearly exhibited in the mathematical model.  

Place and Duration of Study: This research was done at Fayetteville State University, North Carolina 
USA, and is sponsored by the FSU Mini-Grant Award and the HBCU Graduate STEM Grant. The 
research was done during the Spring of 2012. 
Methodology:. The deterministic nonlinear HIV-1 AIDS patho-physio-dynamical equations are analyzed 
using the techniques of dynamical system theory, principles of linearized stability, Hartman-Grobman 
theory, and other relevant mathematical techniques. The clinically desirable equilibrium states are and 
their local existence and global stability are analyzed. Investigative computer simulations are performed 
illustrating some physiological outcomes. 
Results: Mathematical criteria are derived under which the clinically desired outcomes can occur.  
Investigative computer simulations are presented which elucidate a number of physiological scenarios of 
primary HIV-1 infection, involving the annihilation, and  persistence of HIV-1 in the absence of AIDS 
Pharmacotherapy 
Conclusion: Mathematical modeling can be a useful technique in the derivation of prognostic criteria and 
quantitative analysis of  AIDS  during the acute and chronic phases. 
. 

 16 
Keywords: HIV-1 annihilation criterias, mathematical model, computer simulations, acute and chronic phase 17 
 18 
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 19 

1. INTRODUCTION  20 

Human Immunodeficiency Virus (HIV) belongs to a family of ribonucleic (RNA) lenti-viruses. In particular, the 21 
epidemiologically common subtype called HIV-1 is implicated for causing the Human Acquired Immunodeficiency 22 
Syndrome (AIDS). The pathogenesis of AIDS can be divided into three main phases called the acute phase, the 23 
clinical latency phase, and the full-blown AIDS phase.   24 

The HIV-1 virion uses the glycoprotein gp120 to locate the CD4 surface molecules and the host cells. By 25 
means of CCR5 or CXCR4, the HIV-1 virions fuses to the host cell surfaces and eventually enter the cell. The 26 
CD4+ T cells are the major targets for the HIV-1 virions. But macrophages, monocytes, neurons, astrocytes, and 27 
microglia cells in the central nervous system (CNS) possess CCR5 chemokine co-receptors and hence are 28 
targets of HIV-1 virions.  The pathogenesis of HIV-1 infection comprises the virus life cycle, the host cellular 29 
environment, and the viral load in the infected person. There exist strains of HIV-1 virus known as T-tropic and M-30 
tropic which interact respectively with the CXCR4 and CCR5 chemokine co-receptors .  31 

During the acute phase of HIV-1 infection, the person is seropositive after exposure and immunological 32 
reaction to the initial viral inoculum.  The person experiences transient infection resembling mononucleosis for 1-33 
12 weeks. The symptomatic primary HIV-1 infection is usually characterized by fever, lymphadenopathy, 34 
pharyngitis, arthralgia, rash, and lethargy. This is called acute retroviral syndrome (ARS) and is experienced by 35 
most but not all of the HIV-1 infected persons. During this phase, large amount of HIV-1 virions are produced 36 
inside the patient body. Inside the patient body, the HIV-1 viral envelope decoates and HIV RNA, reverse 37 
transcriptase, integrase, and other viral protein enter the host cell leading to formation of a pre-integration 38 
complex inside the host cell such as the CD4+ T cells. Then reverse transcriptase is used to produce HIV-1 viral 39 
DNA. The viral DNA is transported across the nucleus of the host cell and integrates into the host DNA. The next 40 
step is the production of new HIV-1 viral proteins using the HIV-1 viral RNA as genomic RNA. HIV proteases 41 
cleave newly synthesized polyproteins at the appropriate places to create the mature protein components of an 42 
infectious HIV virion. Then the new viral RNA and viral proteins migrate to the host surface and form a new 43 
immature HIV-1provirus. The mature newly formed HIV-1 virions exit the host cell by a process called budding. In 44 
particular, several millions of virus RNA copies may be released into the blood plasma of the patient.  45 

After 3 months, the chronic clinical latency phase starts. During this phase, the rate of HIV-1 replication in 46 
the host cell decreases as the CD4+ T cells numbers increases as a result of the cytotoxic intervention of the 47 
body’s immune system mounted by the CD8+ T cells. In particular, it is possible at this stage for the blood plasma 48 
HIV-1 viral titre to be subclinical and plunge to undetectable levels.  This may continue up to 8 years or longer. 49 
Pantaleo, G (1993); Siliciano, R. F. (1998); Wasef, N. M.(2003). 50 

The third phase of HIV-1 dynamics is characterized by a rapid exponential increase in the number of HIV-1 51 
virions in the blood plasma, increase in the number of HIV-1 infected CD4+ T cells, and a rapid decrease of 52 
uninfected CD4+ T cells to a level below 200 cells per microliter and a complete failure of the anti-HIV cytotoxic 53 
activity of CD8+ T cells. Walker, C. M. et al. (1986) 54 

Several mathematical models of HIV-1 dynamics have been constructed by many authors including Pantaleo 55 
et al (1993); Essunger, P., Perelson, A.S. (1994); Perelson, A.S., Nelson, P. (1999); Kirschner, D., Webb, G.F. 56 
(1996); Wodarz, D. et al. (1999); Wodarz, D. (2001); Wodarz, D., Nowark, M. (1999). These authors proposed 57 
various mathematical models which describe certain aspects of HIV-1 life cycle with the aim of finding criteria for 58 
cure of AIDS or present a quantitative analysis of the dynamics of the HIV-1 virus. Ciupe, M.S., Bivort, B.L., Bortz, 59 
D.M. and Nelson, P.W. (2006) presented a detailed analysis of three different mathematical models with regard to 60 
local and global stability of infected and uninfected equilibrium (steady) states of HIV-1 infection. Their analysis 61 
also included the dynamics of time delay models. Li, M.Y. and Shu, H. (2011) performed an elaborate analysis of 62 
the global dynamics of a mathematical model for HTLV-1 infection of CD4+ T cells with delayed CTL response. In 63 
particular, they demonstrated that the time delay can destabilize the system equilibrium leading to Hopf 64 
bifurcations and stable periodic oscillations. Similar analysis of the global dynamics of HIV-1 infection of CD4+ T 65 
cells was done by Wang, L. and Li, M.Y. (2006). They obtained some interesting results on the stability of infected 66 
and non-infected equilibrium states of AIDS infection. A stochastic model for HIV-1 population dynamics has been 67 
presented and analyzed by Tuckwell and Corfec (1998). In particular, they analyzed the random fluctuations 68 
associated with HIV-1 infection and dynamics. In the forthcoming paper, we will present a stochastic model of 69 
HIV-1 dynamics which incorporates viral contributions from latent reservoirs and also accounts for apoptosis. 70 
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In this paper, new mathematical models for the acute phase and the asymptomatic clinical latency phase are 71 
proposed and analyzed. In particular, elaborate and robust mathematical criteria will be presented elucidating the 72 
conditions under which the chronic clinical latency phase can be maintained indefinitely in the seropositive HIV-1 73 
infected person. 74 

 75 

2.DEFINITION AND DESCRIPTION OF MODEL PARAMETERS.  76 

 77 

The model of HIV-1 patho-physio- dynamics presented in this paper contains many variables and constant 78 
parameters. These parameters include stoichiometric interaction coefficients, cellular degradation rate constants, 79 
apoptotic rate constants, rate constants for production of immune cells from the thymus gland via haematopoietic 80 
progenitors, rate constants for recruitment of HIV-1 virions from latent reservoirs, intra-specific competition rate 81 
constants between infected / uninfected CD4+ T cells, and activation constants for CD4+/CD8+ T cells. The 82 
catalogue of constants is presented as follows 83 

x1: the number density of un-infected CD4
+ 

helper T-lymphocytes per unit volume 84 

x2: the number density of HIV-1 infected CD4
+ 

helper T-lymphocytes per unit volume 85 

x3: the number density of HIV-1 virions in the blood plasma per unit volume 86 

x4: the number density of HIV-1 specific CD8
+ 

cytotoxic T-lymphocytes per unit volume 87 

S1:  rate of supply of un-infected CD4
+
 T4-lymphocytes  88 

S2:  rate of supply of latency infected CD4
+
 T4-lymphocytes 89 

S3: rate of supply of HIV-1 virions from macrophage, monocytes, microglial cells and other lymphoid tissue 90 
different from T4-lymphocytes 91 

S4:  rate of supply of CD8
+ 

 T8-lymphocytes from the thymus 92 

ai, bi: constant associated with activation of lymphocytes by cytokine interleukin-2 (IL-2) 93 

αi: constant associated with HIV-1 infection of CD4
+
 T4 helper cells  94 

1: the number of HIV-1 virions produced per day by replication and budding in CD4
+
 T4 helper cells 95 

2: rate constant associated with replication and “budding” of HIV-1 in syncytia CD4
+
 T4 helper cells per day per 96 

micro liter (l) and released into the blood plasma 97 

3: the number of HIV-1 virions produced per day by replication and “budding” in non-syncytia CD4
+
 T4 helper 98 

cells and released into the blood plasma 99 

qi: constant depicting competition between infected and un-infected CD4
+
 T4 helper cells 100 

ki: constant depicting degradation, loss of clonogenicity or  “death” 101 

ei0: constant depicting death or degradation or removal by apoptosis (programmed cell death) 102 

Ki: constant associated with the killing rate of infected CD4
+
 T4 cells by CD8

+ 
 T8 cytotoxic lymphocytes 103 

 104 
.. 105 

3.  MODEL DESCRIPTION AND ANALYSIS 106 

In this section, the mathematical formulation for the acute and chronic phase of HIV-1 patho-physio-dynamics 107 
will be presented.  108 

3.1. The description of the mathematical model  109 

3.1.1 The CD4+ T cell dynamics:  110 

1011211311

2

1111
11 exkxxqxxexaSx

xb


       (3.1) 111 

      112 
The instantaneous number of uninfected CD4+ T cells in the blood plasma of the patient at any time during 113 

the acute or chronic phase is equal to the rate of supply of uninfected CD4+ T cells from the thymus via 114 
hematopoietic progenitor cells (

1S ); plus the activation/proliferative recruitment of antigen activated and 115 

interleukin-2 stimulated CD4+ T cells ( 112

11

xb
exa
 ); less the number of CD4+ cells recruited into the pool of HIV-1 116 

infected CD4+ T cells by infection with HIV-1 virions (
311 xx ); less the number of CD4+ T cells lost by intra-117 
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specific competition with HIV-1 infected CD4+ T cells(
211 xxq ); less the number of CD4+ T cell lost by enzymatic 118 

degradation(
11xk ); and less the number of CD4+ T cells lost by apoptosis/exfoliative cytolytic death(

10e ). 119 

 120 
3.1.2 The HIV-1 infected CD4+ dynamics:  121 

20421312221231221222
12 exxKxxkxxqxxexxaSx

xb


     (3.2) 122 

   123 

The instantaneous number of HIV-1 infected CD4+ T cells in the blood plasma of the patient during the acute 124 
or chronic phase is equal to the rate of supply of HIV infected CD4+ T cells from resting CD4+ T cells (

2S ); plus 125 

the activation/proliferative recruitment of antigen activated and interleukin-2 stimulated HIV-1 infected CD4+ T 126 

cells ( 12

212

xb
exxa
 );  plus the addition of the HIV-1 infected CD4+ T cells (

312 xx );less the number of CD4+ T 127 

cells lost by intra-specific competition with HIV-1 uninfected CD4+ T cells(
212 xxq ); less the number of HIV-1 128 

infected CD4+ T cell lost by enzymatic degradation(
22 xk ); and less the number of HIV-1 infected CD4+ T cells 129 

lost as a result of budding of newly produced virions (
31x ); less the number of HIV-1 infected CD4+ T cells lost 130 

by cytolytic action by HIV-1 specific CD8+ T cells(
421 xxK ); and less the number of HIV-1 infected CD4+ T cells 131 

lost by apoptosis/exfoliative cytolytic death(
20e ). 132 

3.1.3  The blood plasma HIV-1 virion dynamics:  133 

30333133332233 exkxxxxxSx         (3.3) 134 

      135 

The instantaneous number of HIV-1 virions in the blood plasma of the patient is equal to the rate of supply of 136 
HIV-1 virions from the latently infected viral reservoirs (

3S );  plus the number of HIV-1 virions released from the 137 

syncytia of CD4+ T cells/dendritic cells/macrophages (
322 xx ); plus the number of HIV-1 virions released from 138 

budding HIV-1 infected CD4+ T cells (
33x ); less the number of HIV-1 virions lost during infection of CD4+ T 139 

cells (
313 xx ); less the number of HIV-1 virions lost by enzymatic degradation/catabolism(

33xk ); and less the 140 

number of HIV-1 virions lost in the form of unintegrated HIV-1 DNA molecules per provirus ( 30e ).    141 

 142 

3.1.4  The CD8+ T cells dynamics:  143 

404442241444
14 exkxxKexxaSx

xb


                                   (3.4) 144 

      145 

The instantaneous number of HIV-1 specific CD8+ T cells is equal to the rate of supply the thymus via 146 
hematopoietic progenitor cells; plus activation/proliferative recruitment of antigen activated and interleukin-2 147 

stimulated HIV-1 specific CD8+ T cells ( 14

414

xb
exxa
 );  less the number of CD8+ T cells lost during cytolysis of 148 

HIV-1 infected CD4+ T cells ();less the number of HIV-1 specific CD8+ T cell lost by enzymatic 149 
degradation(

44 xk ); less the number of HIV-1 specific CD8+ lost by apoptosis/exfoliative cytolytic death(
40e ). 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 
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3.2 The Cauchy problem for dynamics of HIV-1 during the acute and chronic phases 161 

 162 
In this section, the initial value problem (Cauchy problem) for HIV-1 dynamics during the acute and chronic 163 

phases will be mathematically analyzed and discussed with regard to well - posedness, dissipativity of solutions, 164 
and invariance of non-negativity. 165 

From the previous section, the mathematical model for HIV-1 dynamics during the acute and chronic phases 166 
can be described in terms of the following deterministic, non-linear, and coupled ordinary differential equations. It 167 
is assumed that within certain biological limits the environment of the interactions between the uninfected CD4+ T 168 
cells, HIV-1 infected CD4+ T cells, HIV-1 virions in the blood plasma, and HIV-1 specific CD8+ T cells is 169 
homogeneous, isotropic, and hence space independent. Thus ordinary differential equations can be used in the 170 
modeling. In the future, mathematical models using partial differential equations, stochastic differential equations, 171 
and delay differential equations will be presented. Thus that Cauchy problem is described by the following system 172 
of equations: 173 

 174 
 175 

                                  

 

176 

 177 

 

 

178 

 179 

 

 

180 

                                                                                                                                                (3.5) 

181 

 182 
 183 
Let t0 be the time of the initial HIV-1 infection; and define tL, tP, repectively, as the time at which the latency 184 

phase begins and the time at which the post latency phase of HIV-1 dynamics commences in a patient. In 185 
particular, the phases [t0, tL],  [tL, tP] depict respectively the acute phase and the chronic phase of primary HIV-1 186 
induced AIDS.  187 
 188 

 189 

3.3  Dissipativity and boundedness of solutions  190 

 191 
In this subsection, the dissipativity of the model equations will be discussed.    192 

 193 
Definition: Consider the autonomous system of ordinary differential equations: 194 

  195 
 196 

}...,,2,1,0|{
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0

00

nixx

CFandxxwhere

xtxxFx
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n

i

n
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(3.6) 197 

                                                                                                                                     198 
 199 
 200 
Then the system (3.6) is dissipative if  201 

 202 
 203 
 boundedisMwhereMtxSup iii
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The invariance of non-negativity ,  ultimate boundedness of solutions and dissipativity of the model equations   

207 

will be shown as follows: 

208 

 

209 

 

210 

  Let 

 211 

 

212 

                                                                                                                                            (3.7) 

213 

Where tL is the time at which the latency phase begins. Similarly, tP is the time at which the post latency phase of 214 
HIV-1 dynamics commences in a patient and the time beyond which full-blown AIDS occurs. 215 

The system of differential equations (3.5) reduce to the following differential inequalities, for ],[ 0 pttt : 216 

  




















4044444

3033333

2022222

1011111

exkCSx

exkCSx

exkCSx

exkCSx









                                                  (3.8)   

217 

                                                                                  

 

218 

Using the Kamke comparison technique (cf Nani, F., Freedman, H.I. (2000)), the differential inequalities lead 219 
to the following theorem. 220 

Theorem 3.1 221 

Let  

222 

  

223 

               

224 

                                                                            (3.9) 

225 

where  
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226 

Consider the set 227 

 
 ii mxxxxxA   0),,,( 4

4321

 

228 

Then all solutions of the initial value problem (3.5) that originate in int+
4
 will eventually enter the set of A, such 229 

that the solution will be non-negative, ultimately bounded and remain in A for all t +. 230 

Proof   231 

 

 33322
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The differential inequalities (3.8) can be used to obtain the following expressions: 232 

            (3.10)   
233 

     

234 

where  }4,3,2,1{0   iandi

 

235 

Hence, for i = {1, 2, 3, 4}, 236 

i

iii
i

k

eCS
txSup 0)(lim


  237 

and 238 

          

239 

                                                                                (3.11)

 240 

 241 

Thus the flow associated with the system (3.5) is dissipative, and non-negatively invariant if Si +Ci – ei0 > 0. In 242 
particular, the flow associated with the model equations (3.5) will eventually enter the set A and remains trapped 243 

in A for

 

t 
+
, if xi0 int+

4
.  244 

3.4 Criteria for persistence of HIV-1 virions in the chronic phase  245 

In this section, the criteria for the persistence of HIV-1 virions during the chronic phase will be derived. 246 

The differential equation for the HIV-1 patho- physiodynamics during the clinical chronic phase is: 247 

30333133233 )( exkxxxStx    248 

 249 
where S3 is the reflux and repopulation rate of the plasma HIV-1 virions from the lymphoid tissue, microgial cells, 250 
reticules-endothelial cells, monocytes/macrophages and other sanctuaries. e30 is a constant degradation rate of 251 

HIV-1 virions. 2 is the “budding” rate constant of HIV-1 virions. 252 

 253 

Let 254 

            255 
                                                                                                  (3.12) 256 

 257 

and 258 

     0303  eS  259 

     30333133233 )( exkxLxStx          (3.13)                                                                                                  260 

By solving (3.13) using Kamke’s comparison technique [1, 12], the following inequality is obtained:     261 

      

tLk
ke

Lk

eS
tx

)(

2133

303
3

2133)(












       (3.14)                                                                                          

 262 

where k is a positive constant. 263 
In particular, the following theorems arise immediately: 264 

 265 

)(txi
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Theorem 3.2. Suppose  266 

(i)    0303  eS  267 

(ii)   02133   Lk
  

268 

Then 269 

     

0)(inflim
2133

303
3 






 Lk

eS
tx         (3.15)                                                                                         270 

 271 
where H is a bounded positive number of subclinical value.  As a consequence, the number of HIV-1 virions in the 272 
blood plasma of the AIDS patient during the chronic phase will exhibit persistence. The patient will not develop 273 
full-blown AIDS if the value of H is such that the patient does not experience immune system paralysis. 274 
 275 
Theorem 3.3. Suppose 276 

(i)    0303  eS   277 

(ii)   02133   Lk           (3.16) 278 

(iii)   








2133

3030
Lk

eS
  

279 

where ε is a small positive number.  
280 

Then the blood plasma HIV-1 viral titre is negligibly subclinical and the AIDS patient has insignificant HIV-1 
281 

RNA copies in the blood plasma during the chronic phase.  
282 

 283 
 284 
Theorem 3.4. Suppose 285 

(i) 02133   Lk                                             
 286 

(ii) 0303  eS
           (3.17)

 287 

Then the number of HIV-1 virions in the blood plasma increases exponentially. The HIV-1 positive patient will 288 
develop full-blown AIDS. Consequently, the patient will ultimately loose immuno-competency and eventually die 289 
as a result of opportunistic infections.   290 

 

291 

 

292 

 

293 

4. ANALYSES  OF THE  PHYSIOLOGICAL OUTCOMES 294 

 295 

The clinically significant equilibrium patho-physiological outcomes of HIV-1 dynamics during the acute and 296 
chronic phases will be analyzed in this section using the principles of linearized stability. The outcomes are called 297 
equilibrium points or rest points of the model equations. The analyses will involve five clinically interesting 298 
equilibrium outcomes labeled {Ei: i =1, 2, 3, 4, 5}.  299 

4.1 Criteria for existence of physiological outcomes 300 

(i) E1 = [0, 0, 0, 0]: this represents the case in which uninfected CD4
+
 T cells, infected CD4

+
 T cells, HIV-1 virions 301 

in blood plasma, and HIV-1 specific CD8+ T cells are all destroyed. This leads to the immune system paralysis in 302 
which the patient dies of opportunistic bacteria or viral infection. This case is clinically feasible if Si - ei0 =0. 303 

(ii) E2 = [ 1x̂ , 0, 0, 4x̂ ]: this represents the case in which infected CD4
+
 T cells and HIV-1 virions in blood plasma 304 

are all destroyed. Clinical doctors working with HIV-1 infected patients would like to achieve this outcome. This 305 
equilibrium point is clinically possible under the following necessary conditions:  306 

 307 

  

 308 

                (4.1) 309 
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                  310 

(iii) E3 = [0, 2x , 3x , 0]: this depicts a clinically worst case situation in which both uninfected CD4
+ 

T cells and HIV-311 

1 specific CD8
+
 T cells are destroyed. This equilibrium point is clinically possible under the following necessary 312 

conditions: 313 
 314 
 315 

                 (4.2) 316 
 317 
 318 
 319 

(iv) E4 = [ 1
~x , 0, 0, 0]: this is the most clinically desirable equilibrium point in which infected CD4+ T cells, plasma 320 

HIV-1 virions, and HIV-1 specific cytotoxic CD8+ T cells are all annihilated. The necessary conditions for the 321 
existence of this equilibrium point are: 322 
 323 

 324 

          (4.3) 325 

 326 

(v) E5 = [ 1x


, 2x


, 3x


, 4x


]: this case can only exist if the equation (3.0) exhibits persistence  in which all the four 327 

factors co-exist. The details of showing persistence in nonlinear systems of differential equations have been 328 
discussed by Nani, F., Freedman, H.I. (2000).  329 

There are other equilibrium points such as E[x1, x2, 0, 0], E[0, 0, x3, x4] and many planar or axial points. 330 
These are clinically uninteresting and are not considered in this paper, but will be analyzed in a future paper. 331 

 332 
4.2. Linearized stability analysis of physiological outcomes 333 

The Hartman-Grobman theorem can be used to investigate the local physiological stability of HIV-1 AIDS 334 
disease dynamics associated with the model equations, in the neighborhood of the physiological outcomes 335 
(equilibrium states). The mathematical model is nonlinear and as such it is difficult to obtain any meaningful 336 
quantitative criteria about the model. Fortunately, the Hartman-Grobman theorem guarantees that the information 337 
contained in the linearized system and the information contained the nonlinear system are equivalent in the 338 
neighborhood of the rest points.   339 

The Jacobian matrix of linearization near any physiological outcome is denoted symbolically by    340 

 341 

    ...,3,2,1)(: 44  kwhereMaEJ xijk  
342 

 

343 

 

344 

 

345 

 

346 

            (4.4)  

347 
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355 

4.2.1     Criteria for annihilation of HIV-1 virions during the acute and chronic phases 

356 

The Jacobian matrix of linearization in the neighborhood of E2 is given by the following matrix: 

357 

                                                                                                         

358 

 

359 

(4.5)                                  

 360 

 361 
The application of the principle of linearized stability and local stability theorems lead to the following: 362 

 363 
 364 
 Theorem 4.1.  Suppose 365 
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(iii) 
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(iv) 
4
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  < 0 369 

Then the rest point ]ˆ,0,0,ˆ[ 412 xxE is local attractor. In particular, the HIV-1 infected CD4+ T cells and the HIV-1 370 

virions in the blood plasma of the AIDS patient are temporarily annihilated during the acute and chronic phases in 371 
the absence of the pharmacotherapy.  372 
 373 
Theorem 4.2. Suppose the conditions of Theorem 4.1 hold, and the following additional conditions hold:   374 
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Then the local attractor E2 can be written in the following form: 379 
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The clinical implication of this result is that  the transient annihilation of the HIV-1 virions and HIV-1 infected 382 
CD4+ T cells occurs during the acute and chronic phases if CD4+ T cells and CD8+ T cells number densities are 383 

given respectively by  

1

2

b
 and 

11

2
1

22

2

Kb

ea b

b


. 384 

 385 
4.2.2 The criteria for transient immune system paralysis during the acute and chronic phases of AIDS 386 

 387 
One of the rest points corresponding the immune system paralysis during primary AIDS infection is E3. The 388 

Jacobian matrix of the linearization of the model equations in the neighborhood of E3 is given as follows: 389 
 390 

           (4.9) 

391 

  392 
 393 

 394 
The application of the principles of linearized stability gives the following result: 395 

 396 
Theorem 4.3. Let 397 

(i) 023322  kkx   398 

(ii) 0)( 33222321  kxkx          (4.10) 399 

                                                                                                       400 
Then the rest point E3 is local attractor. 401 
 402 

The clinical implication of Theorem 4.3 is that the immune system of the AIDS patient suffices transient 403 
paralysis when the conditions (4.10) hold. 404 
 405 
Theorem 4.4.  Suppose the conditions of Theorem 4.1 hold, and the following additional conditions hold:   406 
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(iv) 
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 411 
Then E2 is a local attractor.  412 

 413 
The analysis of other rest points will be done in a future publication.  414 
 415 
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4.3. Global stability analysis of physiological outcomes 423 

In this section, theoretical criteria will be presented for global stability of the clinically desirable physiological 424 
outcome ]ˆ,0,0,ˆ[ 412 xxE . 425 

 426 

Consider space        (4.12) 427 
 428 
The model equations (3.5) correspondingly reduce to the following: 429 
  430 
     431 
             (4.13) 432 

  433 

Consider the Liapunov functional [1, 12]: 434 

 435 

                                                                                                            436 
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      (4.14) 438 

The derivative of V along the solution curves of the model equations yields the result: 439 
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(4.15) 441 

Define the following Lebesgue measurable, functions which are of bounded variation: 442 
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(4.20) 457 

                   458 

 459 

 460 

 461 

then 462 

              (4.21)                                                                                                     463 

 464 

Where X
T
 denotes the transpose of X and 

*

V  is negative definite if the eigen-values of A have negative real parts.  465 

 In particular, the [aij]2x2 are defined as follows: 466 

 467 

 468 

                (4.22)                                                                                                469 

 470 

 471 

 472 

As the flow dynamics approaches the steady state E2[x1, 0, 0, x4], the following conditions hold: 473 

 474 

 475 

 476 

              (4.23)                                                                                           477 

 478 

but 479 

              480 

                                                                                                                             (4.24) 481 

 482 

Hence, the sufficient criteria for the global asymptotic stability of E2  are specified in the following 483 
theorem.  484 

 485 
Theorem 4.5. Suppose the following conditions hold: 486 

(i) Criterion (4.1) 487 

(ii)
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(iii) )
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b
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Then the clinically desirable rest point E2 is a global attractor. 490 
 491 

The clinical implication of Theorem 4.5 is that the AIDS patient will experience permanent annihilation of the 492 
infected CD4+ T cells and HIV-1 virions in the blood plasma if the patient’s patho-physio-dynamics conforms to 493 
the conditions specified in the theorem.    494 
 495 
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 496 

 497 

 498 

 499 

5. COMPUTER SIMULATION RESULTS AND DISCUSSION 500 

In this section, investigative computer simulations are performed under specific parametric configurations. It 501 
must be stated emphatically that Theorems 4.1 – 4.4 are applicable only to the equilibrium configurations {Ei: i =1, 502 
2, 3, 4, …, n}. of the patho-physiodynamics of HIV-1 virus in the AIDS patient. These theorems are “if…then…” 503 
theorems and as such are fulfilled only when the AIDS dynamics attains the equilibrium configuration in the 504 
patient. In particular, there exist certain sufficient but not necessary criteria under which the AIDS patient can 505 
experience clinically favorable outcomes. On the other hand, under the specified conditions of Theorems 4.1-4.4 506 
the predicted results are valid. The simulation results are presented in Sections 5.1 through 5.4. The time profile 507 
for the simulation is measured in years. 508 

The problem of parameter estimation in mathematical modeling of physiological systems is a non-trivial one. 509 
There is a quasi-uniqueness of patho-physio-dynamics of disease in the patient and as such no two persons have 510 
identical physiological parametric configurations for a given disease. These phenomena have been discussed in 511 
the publication by Wu, H. et al. (1999). Several techniques concerning parameter estimation have been discussed 512 
by many authors including Ciupe, M.S. et al. (2006), Perelson, A.S., et al. (1996); Perelson, A.S., and Nelson, P. 513 
(1999); Han, C. et al. (2002); Graziosi, C. et al. (1993);  Chun, T.W., et al. (1996); Wodarz, D., et al. (1999); 514 
Wodarz, D., and Nowark, M. (1999).  515 

Theorems 4.1-4.4, however, are based on equilibrium configurations of patho-physio-dynamics of AIDS. 516 
Thus, the techniques presented in the above references must be modified in order to obtain relevant estimates of 517 
the dynamical variables presented in this paper. In particular, in vitro and in vivo experiments as well as human 518 
biopsies from the peripheral blood of the AIDS patient are required in order to accurately determine most of the 519 
dynamical variables and constants of the model.  Simulations based on equilibrium dynamics of AIDS using ACSL 520 
(Advanced Continuous Simulation Language) will be presented in a forthcoming paper.   521 

5.1 Simulation results for hypothetical AIDS patient #1  522 

The hypothetical patient #1 possesses a non-equilibrium patho-physio-dynamics parametric configuration P1 523 
presented in Table 1. The HIV-1 dynamics in this patient represents the classic profile for the acute and clinically 524 
chronic phases of AIDS. The simulation results for patient #1 are exhibited in Figure 1. It can observed that the 525 
HIV-1 infected CD4+ T cells and the blood plasmas HIV-1 virions are completely eradicated in this patient without 526 
the use of anti-AIDS pharmaco-therapeutic drug protocols.  In addition, patient #1 experiences immune system 527 
reconstitution as the uninfected CD4+ T cells repopulate and proliferate towards their pre-HIV-1 infection carrying 528 
capacities.   529 

Table 1 Parametric Configuration 1 530 

 531 

S1 = 1.5 /day/l 

a1 = 0.009 /day/cell/l 

b1 = 0.001 /cell/l 

α1 = 0.05/day/virion/l 

k1 = 0.005/day/l 

q1 = 0.0045/day/l/cell 

e10 = 8.8 cells/day/l 

x10 = 703 cells/l 

S2 = 0.85 /day/l 

a2 = 0.004 /day/cell/l 

b2 = 0.004/cell/l 

α2= 0.1/day/virion/l 

k2 = 0.05/day/l 

q2 = 0.0001/day/l/cell 

1 = 50 virons/CD4
+
/day 

K1 = 0.001/day/l 

e20 = 0.005 cells/day/l 

x20 = 100 cells/l 

 

S3 = 0.0 /day/l 

2 = 0 virons/CD4
+
/day/l 

3 = 50 virons/CD4
+
/day 

α3 = 0.0027/day/virion/l 

k3 = 0.0001/day 

e30 = 0.0001 /day 

x30 = 0.01 cells/l 

S4 = 0.272 /day/l 

a4 = 0.0075 /day/cell/l 

b4 = 0.001/cell/l 

K2 = 0.0024 /day/l 

k4 = 0.001/day/l 

e40 = 7.75 cells/day/l 

x40 = 800 cells/l 
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 532 

 533 

 534 

   535 

   536 
Figure 1 Simulation results using parametric configuration 1 537 

 538 

5.2 Simulation results for hypothetical AIDS patient #2  539 

For this simulation, the hypothetical AIDS patient #2 is assigned the patho-physiological parameter 540 
configuration presented in Table 2. As in the previous simulation, the configuration P2 does not depict an 541 
equilibrium configuration. The simulation results are exhibited in Figure 2. It can be observed that the patient does 542 
not have a clinically favorable prognosis. Because the disease has apparently progressed beyond the time point 543 
characterized as tp , which is defined as the threshold time for full-blown AIDS.  As presented in Figure 2, the 544 
patient undergoes immune system paralysis in which the CD4+ T cells transiently destroyed. On the other hand, 545 
the cytotoxic activity of CD8+ T cells appears to be potent as observed in the eradication of the HIV-1 infected 546 
CD4+ T cells. Paradoxically the plasma HIV-1 viremia increases exponentially in the patient resulting in a more 547 
morbid AIDS outcome.  548 

Table 2 Parametric Configuration 2 549 

S1 = 1.5 /day/l 

a1 = 0.009 /day/cell/l 

b1 = 0.001 /cell/l 

α1 = 0.05/day/virion/l 

k1 = 0.005/day/l 

q1 = 0.0045/day/l/cell 

e10 = 8.8 cells/day/l 

x10 = 703 cells/l 

S2 = 0.85 /day/l 

a2 = 0.004 /day/cell/l 

b2 = 0.004/cell/l 

α2= 0.1/day/virion/l 

k2 = 0.05/day/l 

q2 = 0.0001/day/l/cell 

1 = 51 virons/CD4
+
/day 

K1 = 0.001/day/l 

e20 = 0.005 cells/day/l 

x20 = 200 cells/l 

S3 = 10.5 /day/l 

2 = 0.025    

       virons/CD4
+
/day/l 

3 = 51 virons/CD4
+
/day 

α3 = 0.027/day/virion/l 

k3 = 0.0001/day 

e30 = 0.0001 /day 

x30 = 5.5 cells/l 

S4 = 0.272 /day/l 

a4 = 0.0075 /day/cell/l 

b4 = 0.001/cell/l 

K2 = 0.0024 /day/l 

k4 = 0.08/day/l 

e40 = 10.75 cells/day/l 

x40 = 800 cells/l 
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 550 

       551 

               552 
 553 
 554 

Figure 2 Simulation results using parametric configuration 2 555 

5.3 Simulation results for hypothetical AIDS patient #3  556 

The patho-physiological parametric configuration of patient #3 is shown in Table 3. It must be noted that the 557 
AIDS in this patient is in the acute phase and as such the simulation results span a time period lasting up to one 558 
year. The results of the simulation are in Figure 3. This is a non-equilibrium AIDS configuration simulation as it is 559 
evident by the simulation time profile. The simulation results show that at the end of the acute phase, the AIDS 560 
patient experiences annihilation of uninfected CD4+ T cells. In addition, the HIV-1 specific CD8+ T cells eradicate 561 
successfully the HIV-1 infected CD4+ T cells. Unfortunately the immune system paralysis, which occurs as a 562 
consequence of the low CD4+ T cell number density, eventually leads to an exponential increase of the blood 563 
plasma HIV-1 viremia. This simulation represents an unfavorable AIDS outcome during the acute phase.       564 

Table 3 Parametric Configuration 3 565 

S1 = 1.5 /day/l 

a1 = 0.009 /day/cell/l 

b1 = 0.001 /cell/l 

α1 = 0.05/day/virion/l 

k1 = 0.005/day/l 

q1 = 0.0045/day/l/cell 

e10 = 8.8 cells/day/l 

x10 = 703 cells/l 

S2 = 0.0 /day/l 

a2 = 0.004 /day/cell/l 

b2 = 0.004/cell/l 

α2= 0.1/day/virion/l 

k2 = 0.05/day/l 

q2 = 0.0001/day/l/cell 

1 = 10 virons/CD4
+
/day 

K1 = 0.001/day/l 

e20 = 0.005 cells/day/l 

x20 = 100 cells/l 

 

S3 = 0.0 /day/l 

2 = 0.0 virons/CD4
+
/day/l 

3 = 10 virons/CD4
+
/day 

α3 = 0 /day/virion/l 

k3 = 0.0001/day 

e30 = 0.0001 /day 

x30 = 0.01 cells/l 

S4 = 0.272 /day/l 

a4 = 0.0075 /day/cell/l 

b4 = 0.001/cell/l 

K2 = 0.0024 /day/l 

k4 = 0.001/day/l 

e40 = 7.75 cells/day/l 

x40 = 800 cells/l 
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 566 

 567 

  568 

 569 

  570 

 571 

Figure 3 Simulation results using parametric configuration 3 572 

5.4 Simulation results for hypothetical AIDS patient #4 573 

The simulation results for hypothetical patient #4 are exhibited in Figure 4. These simulation results are 574 
based on the patho-physiological parametric configuration P4. In this patient the AIDS disease progresses from 575 
the acute phase into a 6 year clinically chronic phase before the development of full-blown AIDS.   576 

Table 4 Parametric Configuration 4 577 

S1 = 1.5 /day/l 

a1 = 0..5 /day/cell/l 

b1 = 0.001 /cell/l 

α1 = 0.05/day/virion/l 

k1 = 0.005/day/l 

q1 = 0.0045/day/l/cell 

e10 = 8.8 cells/day/l 

x10 = 703 cells/l 

S2 = 0.0 /day/l 

a2 = 0.05 /day/cell/l 

b2 = 0.004/cell/l 

α2= 0.5/day/virion/l 

k2 = 0.05/day/l 

q2 = 0.0001/day/l/cell 

1 = 2 virons/CD4
+
/day 

K1 = 0.001/day/l 

e20 = 0.005 cells/day/l 

x20 = 100 cells/l 

 

S3 = 0.0 /day/l 

2 = 0.0001    

       virons/CD4
+
/day/l 

3 = 2 virons/CD4
+
/day 

α3 = 0.0001/day/virion/l 

k3 = 0.0001/day 

e30 = 0.0001 /day 

x30 = 0.01 cells/l 

S4 = 0.272 /day/l 

a4 = 0.0075 /day/cell/l 

b4 = 0.001/cell/l 

K2 = 0.0024 /day/l 

k4 = 0.08/day/l 

e40 = 7.75 cells/day/l 

x40 = 800 cells/l 

 578 
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  579 

 580 

  581 

 582 

Figure 4 Simulation results using parametric configuration 4 583 

5.5 Simulation results for hypothetical AIDS patient #5 584 

This scenario represents a relatively favorable progression of AIDS in hypothetical patient #5. The data for 585 
the simulation results are given in Table 5 and the simulation results are displayed in Figure 5. The patho-586 
physiological parametric configuration of this patient does not represent an equilibrium configuration and as such 587 
the condition of theorems 4.1-4.4 are not applicable.  It can be observed from the simulation results that the 588 
patient would develop full-blown AIDS approximately after 10 years. On the other hand, the patient experiences 589 
relatively good immune-competency from the beginning of the initial infection up to approximately 10 years before 590 
the onset of full-blown AIDS.  591 

Table 5 Parametric Configuration 5 592 

S1 = 1.5 /day/l 

a1 = 2.5 /day/cell/l 

b1 = 0.001 /cell/l 

α1 = 0.05/day/virion/l 

k1 = 0.005/day/l 

q1 = 0.0045/day/l/cell 

e10 = 8.8 cells/day/l 

x10 = 703 cells/l 

S2 = 0.0 /day/l 

a2 = 0.05 /day/cell/l 

b2 = 0.004/cell/l 

α2= 0.5/day/virion/l 

k2 = 0.05/day/l 

q2 = 0.0001/day/l/cell 

1 = 2 virons/CD4
+
/day 

K1 = 0.001/day/l 

e20 = 0.005 cells/day/l 

x20 = 100 cells/l 

 

S3 = 0.0 /day/l 

2 = 0.0001    

       virons/CD4
+
/day/l 

3 = 2 virons/CD4
+
/day 

α3 = 0.0001/day/virion/l 

k3 = 0.0001/day 

e30 = 0.0001 /day 

x30 = 0.01 cells/l 

S4 = 0.272 /day/l 

a4 = 4.0 /day/cell/l 

b4 = 0.001/cell/l 

K2 = 0.0024 /day/l 

k4 = 0.001/day/l 

e40 = 7.75 cells/day/l 

x40 = 800 cells/l 

 593 
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 595 

   596 

 597 

Figure 5 Simulation results using parametric configuration 5 598 

5.6 Simulation results for hypothetical AIDS patient #6 599 

The patho-physiological configuration of hypothetical patient #6 is given in Table 6. The simulation results 600 
depict an AIDS scenario which progresses from the acute phase through a relatively short chronic phase and 601 
heading towards the development of full-blown AIDS, as shown in Figure 6. It can be observed also that from the 602 
time period between 0 to 4 years the patient has sufficient immuno-competency as it is evident in the relatively 603 
higher dynamic number density of the CD4+ T cells and the HIV-1 specific CD8+ T cells as compared to the low 604 
dynamic number density of the HIV-1 infected CD4+ T cells and the blood plasma HIV-1 virions. Beyond the 605 
period of 6 years, then blood plasma HIV-1 virion and the HIV-1 infected CD4+ T cells number densities begin to 606 
rise as the patient heads towards the development of full-blown AIDS.  607 

Table 6 Parametric Configuration 6 608 

S1 = 1.5 /day/l 

a1 = 1.5 /day/cell/l 

b1 = 0.001 /cell/l 

α1 = 0.05/day/virion/l 

k1 = 0.005/day/l 

q1 = 0.0045/day/l/cell 

e10 = 8.8 cells/day/l 

x10 = 703 cells/l 

S2 = 0.0 /day/l 

a2 = 0.05 /day/cell/l 

b2 = 0.004/cell/l 

α2= 0.5/day/virion/l 

k2 = 0.05/day/l 

q2 = 0.0001/day/l/cell 

1 = 2 virons/CD4
+
/day 

K1 = 0.001/day/l 

e20 = 0.005 cells/day/l 

x20 = 100 cells/l 

 

S3 = 0.0 /day/l 

2 = 0.0001    

       virons/CD4
+
/day/l 

3 = 2 virons/CD4
+
/day 

α3 = 0.0001/day/virion/l 

k3 = 0.0001/day 

e30 = 0.0001 /day 

x30 = 0.01 cells/l 

S4 = 0.272 /day/l 

a4 = 3.0 /day/cell/l 

b4 = 0.001/cell/l 

K2 = 0.0024 /day/l 

k4 = 0.001/day/l 

e40 = 7.75 cells/day/l 

x40 = 800 cells/l 

 609 
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 611 

  612 

 613 

Figure 6 Simulation results using parametric configuration 6 614 

 615 

 616 

6. SUMMARIZING REMARKS 617 

 618 

In this paper, we have presented a novel and robust approach to the study of HIV-1 dynamics during the 619 
acute and chronic phases. The special contribution of this model includes an explicit role of source terms S1, S2, 620 
S3, S4, which depict recruitment from the thymus gland and the HIV-1 viral reservoirs. Clinically relevant activation 621 
functions describing the action of IL-2 on the T cells are also included in the model equations. The clinical 622 
outcomes are clearly exhibited together with the associated criteria for existence. In particular, the simulation 623 
results depict the scenario of chronic asymptomatic HIV-1 infection during chronic latency phase in which the 624 
infected CD4

+
 T cells and the plasma, viremia are annihilated. The results elucidate and exhibit additional details 625 

of HIV-1 dynamics than the cited literature. In a future publication, investigative computer simulation results will be 626 
presented elucidating Theorems 4.1-4.4. In particular, the simulation software ACSL (Advanced Continuous 627 
Simulation Language) will be used in the simulation of time delay versions of model equations (3.5).  628 

 629 
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