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THERMAL DRAG OF THE ANTIPHASE DOMAIN

BOUNDARY MOTION

A. UMANTSEV

Science Department, Saint-Xavier University, Chicago, IL 60655, U.S.A.

(Received 18 August 1997; accepted 18 May 1998)

AbstractÐThe antiphase domain boundary is a region in materials where ordering of atoms changes from
one structural variant to another. The in¯uence of the internal energy excess on the dynamics of such a
boundary is considered in the framework of the Onsager theory of linear response. The internal energy
transport entails a temperature hump in the transition region and causes a drag e�ect. An evolution
equation that takes into account the ®nite thermal conductivity is derived. An experimental setup to reveal
the thermal drag is suggested. # 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION

Symmetry breaking order±disorder transitions in

alloys generally are characterized by a loss of orien-

tational or translational symmetry elements when

di�erent structural variants are possible in a trans-

formed material. They may appear as a result of

continuous ordering below the critical temperature

TC. If the alloy is quenched from the disordered

phase into the ordered one, both variants should

nucleate at random at the initial stage of transform-

ation and the con®guration of the crystal may be

described as a fractal structure of two or more self-

entangled, interwoven macrodomains which is

characterized by a wide range of length scales. The

antiphase domain boundaries (APB) or domain

walls are interfacial layers of thickness w that separ-

ate domains with opposite relative displacements of

atoms and otherwise identical physical properties.

Near TC they are so wide that they actually become

visible under the microscope. APBs constitute a net-

work of structural defects of a crystal and, because

of the surface tension s of the interfaces (surface

free energy), they are in global disequilibrium with

the crystal: in later stages of material evolution this

structure will coarsen by the mechanism of APB

migration [1]. It is important to analyze all the

forces that govern coarsening of the network of

APBs because the latter is a ubiquitous process.

Usually APBs are encountered in binary or multi-

component metallic alloys, as is the case for Cu±

Au [2], Fe±Co±V [3] and Fe±Al [4], and the role of

alloying elements on their dynamics is relatively

well elucidated [5]. However, APB motion is also

subjected to di�erent thermal e�ects, that stem

from transmission of energy together with the inter-

face. These e�ects have not received any attention

in the literature; their study is long overdue.

In this paper we derive an evolution equation for

APB motion that takes into account energy transfer
in materials with di�erent magnitudes of the ther-
mal conductivity l. We look at a system that has

been quenched from the disordered state down to
temperature T0<TC, undergone second-order tran-
sition and held isothermal at T0. Notice that during

isothermal annealing only the outer surface of the
sample is actually held isothermal at T0, which does
not exclude a possibility of creating short-range
temperature humps in the bulk.

2. THEORY

Away from equilibrium, each thermodynamic sys-
tem should be characterized by one or a few in-
ternal parameters that unambiguously describe the
state of the system. The motion of a piece of a

spherical interface of given solid angle O separating
two variants of the same phase may be described by
the change in the radius of curvature R. The appro-

priate ¯ux in the present problem is then de®ned as
the rate of displacement of the interface DR in the
direction of the center of curvature:

JV � Vn � DR
Dt

�1�

where D refers to di�erences of quantities after and

before the interface motion and Vn is the normal
velocity of the latter.
Irreversible thermodynamics gives a simple recipe

for the choice of the conjugate driving force: the
product of the ¯ux and force should be equal to the
entropy production in the system due to the process

in question [6]. As the interface is an open system,
the heat transferred into or out of the system DQ
must be taken into account in the expression of the
entropy production due to relocation of an interface
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on DR. Then, denoting by F the driving force of

the interface motion (per unit area), and calculating

the entropy production during Dt, one obtains

JVFOR2Dt � TDSÿ DQ �2�
where T is the average temperature of the interface.

Since the interface does not exchange any work

with the surrounding material, the ®rst law of ther-

modynamics yields that the amount of heat trans-

ferred DQ is equal to the internal energy change

DE. Recalling that F � Eÿ TS, the driving force

may be represented as follows:

F � ÿDF� SDT
OR2DR

�3�

where E, F, S are the internal energy, free energy

and entropy of the transformed material in excess

to that of the homogeneous material and

DT � Tÿ T0. The driving force F represents the

resultant of intermolecular forces exerted on a piece

of interface and is equal to the work done by these

forces per unit of interface displacement. Equation

(3) may also be derived utilizing the concept of the

chemical potential which, in the ®rst place, has been

introduced by Gibbs to simplify the calculation of

the work done by or on the system [7]. In this case,

the SDT term in equation (3) follows from the

Gibbs±Duhem relation and may increase or

decrease the driving force F as compared to the tra-

ditional DF. The ``Gibbs±Duhem force'' may even

drive the ®rst-order transformation, e.g. solidi®ca-

tion, in the direction opposite to DF [8].

The interface will respond to the applied force by

the change of the internal parameter. For purely

resistive systems an Onsager-type relation may be

established between the driving force F and the

conjugate ¯ux JV through the system

JV � GF �4�
where the Onsager kinetic coe�cient G characterizes

the mobility of the interface. If the temperature of

the interface is equal to that of the surrounding ma-

terial and does not vary during transformation then

DF is the only contribution to the driving force F [1]

DF � sO�R� DR�2 ÿ sOR212sORDR �5�
and we arrive at the relation Vn � ÿ2m=R [1, 3, 4].

The interfacial di�usivity m � Gs limits the rate of

boundary migration and may be related to material

parameters through microscopic modeling of the

order±disorder process. As far as the temperature

dependence of the interfacial di�usivity m is con-

cerned, the irreversible thermodynamics recipe guar-

antees positivity of the Onsager kinetic coe�cient

(mobility)G but says nothing about its temperature

dependence. Cahn and Allen [4] proved on the

grounds of the mean-®eld theory, and con®rmed ex-

perimentally, that the interfacial di�usivity m � Gs
does not exhibit any critical behavior near TC and

contains merely an Arrhenius factor due to the acti-

vation energy of atomic motion. Hence, in the

framework of the Lifshitz±Cahn±Allen theory [1, 4]

the rate of APB motion does not bear any critical

dependence on temperature, although the driving

force DF does. This may be explained by the fact

that the ¯ux in our system is coupled to the surface

energy so that the driving force is ``expended'' on

the propulsion of this energy excess. Therefore, the

major carrier of the critical temperature depen-

dence, the surface tension s, will be factored out

from the Onsager relation if the latter is introduced

between the free energy ¯ux sVn, the driving force

ÿ2s/R and the interfacial di�usivity m as the

kinetic coe�cient.

However, advection of interfacial energy along

with APB generates elevation of temperature DT in

the boundary, as follows, and alters the driving

force by the amount SDT, see equation (3). To ®nd

DT one needs to analyze the distribution of the in-

ternal energy density e(r,t) inside the interface. If

the piece of interface is not curved strongly, i.e.

R>>w, and moves slow enough compared with the

rate of ordering and heat ¯ow, i.e. Vn � m=w and

Vn � l=Z where Z is the surface entropy, then we

can assume that the steady-state regime establishes

in the system. It is advantageous to look at this

problem in the coordinate system that moves

together with the interface because the temporal

derivative of the internal energy density e(r,t)

vanishes and the internal energy density ¯ux JE is

constant everywhere. In this reference frame the

substance moves with the velocity (ÿVn). Hence,

neglecting viscous dissipation in the interface, the

¯ux JE has only two varying contributions, convec-

tive (ÿeVn) and conductive (ÿlHT) [9]. As the tem-

perature gradient vanishes outside the boundary we

®nd that

JE � ÿeVn ÿ lrT � ÿe0Vn �6�
where e0 is the energy density in the bulk far from

the interface. Averaging the varying energy density

and temperature gradient over the thickness of the

interface yields for the surface internal energy

e � �eÿ e0�w and temperature elevation DT � rTw.
Thus, the steady-state condition (6) allows one to

resolve for the temperature elevation:

DT � ÿeVn=l: �7�
An equation of APB motion may be derived for

an arbitrary displacement of the interface DR. Yet,

the derivation is simpli®ed if a displacement on the

interfacial width w is considered. Then F � sOR2,

E � eOR2, S � ZOR2, DR � ÿw and equations (1),

(3), (5) and (7) allow us to recast the Onsager re-

lation (4) as follows:

Vn � ÿ m

1� L
� 2
R
; L � mZe

lsw
: �8�
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This is our principal result. It demonstrates that

the speed of the interface is limited not only by the
rate of ordering m but also by the heat conduction
l with the parameter L measuring the relative role

of these processes. Signi®cantly, this e�ect is of the
®rst order in the speed of APB motion, that is
essentially nondissipative in nature and is character-

ized by the e�ective or ``dressed'' interfacial di�u-
sivity meff � m=�1� L�. Thus, even gently curved

pieces of APB, moving slowly towards the center of
curvature, will have a speed lower than that pre-
dicted by the Lifshitz±Cahn±Allen theory [1, 4].

Such slowing down may be called thermal drag
because this e�ect is due to the temperature hump
DT in the transition region and limited thermal con-

ductivity in the material. It occurs because the
Gibbs±Duhem force reduces the driving force F.
Thermal drag is due to the excess energy in the

transition region despite the fact that there is no
energy di�erence between ordered variants, that is

the latent heat of the transition (which causes ther-
mal e�ects during ®rst-order transformations) is
zero for APB motion.

To ®nd the conditions when thermal drag is of
importance, one has to assess the magnitude and

temperature dependence of the parameter L, which
is the ratio of the rates of ordering m/w and heat
¯ow through the interface l/Z. In materials with

reduced thermal conductivity the APB motion is
controlled by the rate of energy transfer instead of
the rate of ordering. Interestingly to note from

equation (8) that if the thermal conductivity
vanishes (l= 0), i.e. the energy transfer mechanism
is ``turned o� '', a curved APB stops cold, implying

that coarsening of the APB structure is not possible
without heat conduction in the material. Although

the latter inference is not quite legitimate within the
present thermodynamic consideration because the
details of the temperature distribution inside the

transition zone become important as l4 0, it was
con®rmed within the mean-®eld approach and will
be addressed elsewhere.

As we are looking at a slowly moving interface,
that is a weakly non-equilibrium thermodynamic

system, the equilibrium relations between thermo-
dynamic functions of the interface may be used
as the ®rst approximation: Z � ÿ@s=@T and

e � s� T0Z. One may expect L to be large in the
vicinity of the critical point, that is for small and
positive t � �TC ÿ T0�=TC, because s and w vary

critically near this point. The surface tension tem-
perature dependence near TC can be obtained from

the relation sAc2=w, where the order parameter
cAtb varies critically with the critical exponent b
and the interfacial width w is of the order of the

correlation length xAtÿ� near TC. Far from the
critical point, e.g. at 0 K, the surface free energy
density s/w can be estimated as kBTC/o where kB is

Boltzmann's constant and o is the atomic volume
of the substance. Hence, for the surface free energy

and entropy this yields

s
w
� kBTC

o
t2�b���; TC

Z
s
� @ ln s

@t
� 2b� �

t
: �9�

The latter expression demonstrates that the surface

entropy Z of APB diverges near TC even faster than
s. As there is no reason to expect a critical behavior
of the conductivity l, substitution of equation (9)
into equation (8) yields

L � �2b� ����2b� ���1ÿ t� � t�mkB
lo

t2�b��ÿ1�: �10�

According to equation (8), the thermal drag is
important if Lr1. Approximately b1n11/2

[10, 11], which makes (2b+n)13/2 and the square
bracket in the expression (10) varies between 3/2
and 1 in the temperature region 0<T<TC(1>

t>0). Hence, these factors do not qualitatively alter
the assessment of the thermal drag e�ect and may
be dropped from further consideration. Thus, as

follows from equation (10), the thermal drag is im-
portant if

mrmlt2�1ÿbÿ��; ml � lo
kB

110ÿ6 m2=s: �11�

If the interface is mobile and mrml the thermal
drag is essential in the entire temperature region

0RtR1. If the interface is sluggish and m<ml,
then the thermal drag manifests itself only near TC

in the temperature region

0RtRtl �
�

m

ml

�1=2�1ÿbÿ��
�12�

In fact if b+n<1 the parameter L diverges near

TC and the heat transfer causes critical slowing
down of the boundary migration. This result is
essentially di�erent from that of the Cahn±Allen

theory. The critical exponents di�er for di�erent
approaches used to study the phase transition. For
instance, in the framework of the mean-®eld theory

b � � � 1=2 [10, 11] and the thermal region tl dis-
appears, leaving only noncritical renormalization of
the interfacial di�usivity me�. However, experimen-
tal observations show that b� � � 0:97 [10], which

creates the possibility for the thermal region near
TC with tl110ÿ5 if m is only one-half of ml. A
quantitative estimate of the genuine interfacial dif-

fusivity m represents a formidable task not only due
to the scarcity of experimental data on the kineticics
of APB but also, as will be discussed below,

because m is not accessible directly from the exper-
iment

3. SELF-SIMILARITY IN APB MOTION

A real three-dimensional surface rarely can be
described by a single radius of curvature R. Rather
it is characterized by two principal radii of curva-
ture, R1 and R2, with the mean curvature
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K � �Rÿ11 � Rÿ12 �=2 that can vanish not only for a

plane �R1 � R2 � 0�, but also for a ``minimal sur-

face'', for which R1 � ÿR2 everywhere. Such sur-

faces are relevant to the self-entangled fractal

structures of APBs where the r.m.s. curvature

�K �
��

K 2 da=

�
da

�1=2

may be very small and does not characterize the

average domain size D. Instead, the latter is inver-

sely proportional to the total area of the surface per

unit volume AY, i.e.

D � n

AY
; AY � 1

Y

�
da

where n is the spatial dimension.

As a result of the fractal nature of the APB struc-

ture, a self-similarity regime sets in after an initial

transient. According to the hypothesis of statistical

self-similarity [4, 12], consecutive in time t con®gur-

ations of the structure are invariant under uniform

magni®cation j which plays the role of the time

independent dimensionless form factor, so that
�K � jAY. Along with the local dynamic

equation (8), the hypothesis of statistical self-

similarity helps to resolve for AY [4]. Because

thermal drag does not change the functional re-

lation between the local characteristics of APB such

as Vn and K, see equation (8), it will not alter the

time exponents of the structural coarsening.

Therefore

�Aÿ1Y �t��2 ÿ �Aÿ1Y �0��2 � 2�jl �2 �13�
where

l � ����������
mefft
p

is the time-dependent characteristic length scale of

the APB structure which is a�ected by the thermal

drag.

According to equation (13), only the rate con-

stant B � meffj2 is accessible from experimental

data on the temporal evolution of the total APB

surface AY in a specimen. This demonstrates that

slow rates of coarsening may not necessarily be a

result of small magnitude of the interfacial di�usiv-

ity m but due to the proximity of the APB structure

to the ``minimal surface'' with �K ÿ40 and j ÿ40.

Measurements of AY(t) after the b.c.c. 4 B2

transition in Fe±24%Al alloy give B110ÿ15 m2=s [4]
which yields that thermal drag is important for this

system if jR10ÿ4. Another observation can be

made from the analysis of the same experimental

data: coarsening of the total APB surface AY in the

specimen anomalously slowed down, i.e. B dropped

from 10ÿ15 to 10ÿ17, when the temperature was

raised from 987K to 990K. This fact, which

remained unexplained in the paper, may be related

to the existence of the thermal region tl,

equation (12), where the APB experiences critical
slowing down.

4. CONCLUSIONS

In summary, we have presented clear evidence of
the thermal drag e�ect on APB motion which is

robust and conceivably independent of the method
employed for analysis. The thermal drag represents
a nondissipative dynamic correction to the driving

force (ÿ2s/R) due to the temperature hump DT
generated by moving APB rather than dissipation
in the latter. Dissipative correction to the evolution
equation (8) has not been considered in the present

paper because it is of the order V 2
n and constitutes

only a (wK) portion of the thermal drag for gently
curved interfaces. Because of the thermal conduc-

tion, the hump will not stay localized within the
interface but will be smeared out, thus creating a
long temperature tail behind the front. The thermal

waves can be imaged in infrared light through in
situ ordering and serve as experimental veri®cation
of the thermal drag e�ect. This e�ect should be
taken into account in experimental work intended

to check the theory of structural evolution in ma-
terials with low thermal conductivity or high mobi-
lity, because it slows down both initial and late

stages of evolution, albeit the time exponents of the
latter stay unchanged. Motion of a ¯at APB, which
may be the case in internal friction experiments,

will be also accompanied by the same e�ect with
the same parameter L, equation (8). Divergence of
the ``drag parameter'' L at the critical point,

equation (10), implies that thermal drag may even
a�ect the continuous transition itself. Of course,
one should not forget that in this region thermal
¯uctuations are meaningful. Temperature depen-

dence of kinetic coe�cients m and l may give rise
to another group of thermal e�ects that are not
considered in this paper. It is naive to expect the

energy transfer to be a unique process that a�ects
continuous transitions. On the contrary, it is but
one example of the whole family of transport pro-

cesses (convective mass ¯ow would be another one)
that has been extensively discussed in the past with
regard to the critical dynamics [13].
A network of domain boundaries may be a part

of a microstructure in the variety of materials that
undergo di�erent continuous transitions, not only
from the same universality class as order±disorder

transition: magnetic and ferroelectric materials,
liquid crystals, polymers, to name only a few. An
order±disorder transition is but one example of a

nondissipative drag e�ect. The damping of the
domain wall in ferrite garnets may be dominated by
the drag force due to the magnetization di�usion

rather than the exchange and relativistic
relaxation [14]. In the framework of the symmetry-
breaking theory of the origin of cosmic structure,
domain walls separating regions of di�erent values
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of the Higgs ®eld may appear as the universe cooled
passing through a series of phase transitions. Thus

the present study, which gives the rate of motion of
such topological defects, may be useful for the
analysis of the cosmic structure formation.
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