
Fayetteville State University Fayetteville State University

DigitalCommons@Fayetteville State University DigitalCommons@Fayetteville State University

Math and Computer Science Faculty Working
Papers Math and Computer Science

January 2006

Exploring Process Groups for Reliability, Availability and Exploring Process Groups for Reliability, Availability and

Serviceability of Terascale Computing Systems Serviceability of Terascale Computing Systems

Daniel I. Okunbor
Fayetteville State University, diokunbor@uncfsu.edu

Christian Engelmann
Oak Ridge National Laboratory

Stephen L. Scott
Oak Ridge National Laboratory

Follow this and additional works at: https://digitalcommons.uncfsu.edu/macsc_wp

Recommended Citation Recommended Citation
Okunbor, Daniel I.; Engelmann , Christian ; and Scott, Stephen L., "Exploring Process Groups for Reliability,
Availability and Serviceability of Terascale Computing Systems" (2006). Math and Computer Science
Faculty Working Papers. 1.
https://digitalcommons.uncfsu.edu/macsc_wp/1

This Article is brought to you for free and open access by the Math and Computer Science at
DigitalCommons@Fayetteville State University. It has been accepted for inclusion in Math and Computer Science
Faculty Working Papers by an authorized administrator of DigitalCommons@Fayetteville State University. For more
information, please contact dballar5@uncfsu.edu.

https://digitalcommons.uncfsu.edu/
https://digitalcommons.uncfsu.edu/macsc_wp
https://digitalcommons.uncfsu.edu/macsc_wp
https://digitalcommons.uncfsu.edu/macsc
https://digitalcommons.uncfsu.edu/macsc_wp?utm_source=digitalcommons.uncfsu.edu%2Fmacsc_wp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uncfsu.edu/macsc_wp/1?utm_source=digitalcommons.uncfsu.edu%2Fmacsc_wp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dballar5@uncfsu.edu

Exploring Process Groups for Reliability, Availability and Serviceability
of Terascale Computing Systems

Daniel I. Okunbor ∗

Department of Mathematics and Computer Science
Fayetteville State University

1200 Murchison Road
Fayetteville, NC 28301

Christian Engelmann and Stephen L. Scott†
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831,

Abstract

This paper presents various aspects of reliability,
availability and serviceability (RAS) systems as they
relate to group communication service, including re-
liable and total order multicast/broadcast, virtual
synchrony, and failure detection. While the issue
of availability, particularly high availability using
replication-based architectures has recently received
upsurge research interests, much still have to be
done in understanding the basic underlying concepts
for achieving RAS systems, especially in high-end
and high performance computing (HPC) communities.
Various attributes of group communication servic and
the prototype of symmetric active replication follow-
ing ideas utilized in the Newtop protocol will be dis-
cussed. We explore the application of group commu-
nication service for RAS HPC, laying the groundwork
for its integrated model.

∗This research was supported in part by an appointment to the
Oak Ridge National Laboratory/Oak Ridge Associated Universities
Historically Black Colleges and Universities and Minority Educa-
tion Institutions Summer Faculty Research Program.

†Supported in part by the Mathematics, Information and Compu-
tational Sciences Office, Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under con-
tract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

1 Introduction

Recent developments in terascale computing have
been aided by cluster computing, which is a distributed
computing environment consisting of loosely coupled
computers working together to solve one “large” prob-
lem [45]. Computer clusters are regarded as com-
modity clusters since they are generally made of
low-cost commercial-off-the-shelf (COTS) computers,
connected through fast local area networks. The con-
cept of computer clustering is not new, the first com-
puter cluster was built in the 1950s and many cluster-
based computer systems have been developed ever
since [45]. There has been a tremendous growth in
researh interests in the application of computer clus-
ters in HPC within the last two decades, see [38] and
[45]. This is due largely to the rapid improvements
and dramatic cost reduction in computing technolo-
gies in both hardware and sofware. The competitive
price/performance ratio of commodity clusters pose
a serious challenge for traditional massively-parallel-
processors supercomputers [3], [22], [24]. The em-
phases in HPC have shifted to commodity clusters, for
reasons of easy deployment, interoperability, flexibil-
ity, scalability, upgradability and low-cost [23], cite-
bib26.

Message passing libraries, such as the Parallel Vir-
tual Machine (PVM) and Message Passaging Inter-
face (MPI), providing interprocessor communication

1

amongst computing nodes, propelled research in par-
allel computing adopting computer clusters [38], [45].
They are considered the de facto standards for pro-
gramming parallel systems. These libraries and many
of their variants (OpenMPI, Local Area Multicom-
puter MPI, MPICH, Harness) and several new oth-
ers have been developed over the years to meet dif-
ferent needs in HPC [3],[4]-[15]. High performance
computing has also benefited in great measures from
advances in algorithms for distributed systems. Bet-
ter job schedulers, such as the Portable Batch Sys-
tem (PBS) (and subsequently, OpenPBS), Condor, Sun
Grid Engine (SGE), and Maui have enabled develop-
ment of several HPC clusters [4]-[15].

The proliferation of software systems supporting clus-
ter computing led to many variations of software tech-
niques for parallel computing. Several of the parallel
processing software systems are application-specific,
limiting their wide utilization. To mitigate this com-
plexity of cluster configuration, cluster management
systems, such as the Open Source Cluster Application
Resource (OSCAR) and Rocks have been developed,
see [45] for detailed information about both sotware
packages.

The architecture of a computer clusters comes in two
flavors, namely, symmetric and asymmetric [45]. In
a symmetric model, the computing nodes are con-
nected to an existing communication network and they
function as individual computers, accepting requests
to users directly from the external network and Inter-
net; the asymmetric model has a node designated as
the headnode to which all users’ requests are sent [45].
The headnode or the frontend serves as gateway for the
rest of the compute nodes. These configurations have
associated with them issues such as reliability, avail-
ability and and serviceability that are pertinent to high-
end, high performance computing. The concepts of re-
liability, availability and serviceability are interrelated
and connote different things to different people [47],
[48]; to the hardware manufacturers, RAS means that
hardware system works continuously even in the pres-
ence of failure in any of the constituent hardware com-
ponents; to software developers, RAS indicates fail-
ures in the underlying processes and hardware com-
ponents do not cause any interruptions in the overall
system performance. A computer system that satisfies
RAS criteria are fault-tolerant - in a hardware realm,
an RAS system implies building a fault-tolerant sys-
tem that possesses the capabilities of sustaining fail-
ures.

This paper describes various aspects of reliability,
availability and serviceability in high performance
computing. While the symmetric model plausibly sup-
ports the high available cluster architecture, it is diffi-
cult to manage due to problems associated with work-
load distribution and reduced optimal performance
[45], [50]. As indicated above, the headnode in the
asymmetric model serves as the primary server, pro-
viding public interface to the entire cluster and hence,
constitutes a single point of failure (SPOF), and there-
fore, a degradation for RAS [4]-[15]. The asymmet-
ric model has been commonly utilized in many cluster
systems due to it ease in implementation and coordi-
nation of interconnected computing nodes. The cluster
management systems, OSCAR and Rocks implement
the asymmetric model, which means that while both
toolkits may be highly valuable in high performance
computing, they suffer from the single point of failure
and hence, may not have high availability property.

There is a growing number of research interests in de-
veloping RAS software systems embedded in the clus-
ter management systems. Examples are the highly
available Linux system (HA-Linux), highly available
OSCAR toolkit (HA-OSCAR), and fault-tolerance
MPI (FT-MPI) [3],[24]-[26]. This paper would fo-
cus on algorithms for developing RAS, fault-tolerant
cluster systems. Distributed algorithms for process
group systems (group communication services), re-
liable multicast/broadcast, total order (atomic) mul-
ticast/broadcast, virtual synchrony have consistently
been described in the literature to support RAS and
fault-tolerant systems. This paper will discuss algo-
rithms for process groups in the context of RAS for
high performance computing. Algorithms for pro-
cess groups are characterized using safety and live-
ness properties. Many variations of these classifica-
tions and specifications are prevalent in literature. A
particularly interesting categorization was one given
by Morgan and Ezilchelvan [43] and implemented in
the Newcastle Total Order Protocol (Newtop). This
would be presented in this paper in addition to descrip-
tion of broadcast service developed and implemented
by Oestreicher [49]. These specifications would pave
the way for the design, development and implementa-
tion RAS for terascale computing.

2 High Availability

Developing highly available HPC systems and thereby,
increasing the quality of HPC software and networks,
is a critical component in the US legislation enti-
tled, “The High-Performance Computing Revitaliza-
tion Act.” The bill establishes security standards and
practices for critical systems serving critical infras-
tructures, the national defense, and advanced scientific
applications [51].

To understand the concept of high availability, it is im-
portant to describe the concepts of reliability, avail-
ability and serviceability. RAS are essential attributes
of a computing system design [49], [50]. A reli-
able system is one that consistently produces the same
results and thus, maintaining data integrity. Relia-
bility pertains to system’s ability to operate contin-
uously without failures or outages. An outage or
fault refers to deviation from the specified behavior
of the system. Faults or outages may be due to er-
ror in design, failure in hardware component, over-
loading of engineered system resources, and error in
executing procedures [47]. Mean Time Between Fail-
ure (MTBF), Failures-In-Time (FITS), Mean Time To
Failure (MTTR), Mean Time to Repair (MTTR) are
parameters generally used for measuring system re-
liability. Availability is the degree to which a sys-
tem suffers degradation or interruption in its service
to the customer as a consequence of failures of one
or more of its parts. It is the percentage of time
when a system is operational. Resnick [47] distin-
guished basic availability from continuous and high
availability. A system is said to have basic availabil-
ity if it is designed, implemented and deployed with
sufficient components (hardware, software and pro-
cedures) to satisfy the systems’s functional require-
ments; high availability is designed, implemented and
deployed with sufficient components to satisfy the sys-
tem’s functional requirements and also has sufficient
redundancy in components (hardware, software and
procedures) to mask certain defined faults or outages
[47]. While high availability masks unplanned out-
ages, continuous availability masks both planned and
unplanned outages. Using the reliability parameters
above, availability can be expressed mathematically as

Availability =
MTTF

MTTF + MTTR
.

Note that MTBF = MTTF + MTTR [47]. The
computed availability is typically specified in terms
of nines. A 1-nine is 90% availability, 2-nines is
99% availability, 3-nines is 99.9% availability, and so
on. The downtime of 1-nine available system is 36.5
days per year; 2-nines available system is 3.65 days
per year. Apparently, the higher the number of nines
the highly available the system becomes. The impor-
tance placed on high availability continues to resonant
in high performance computing. High availability at-
tribute in hardware and software systems has repeat-
edly been modeled using redundancy or replications.
This led to a further characterization of computer clus-
ters, namely, high availability clusters, load balancing
clusters and high performance clusters. High avail-
ability cluster systems are implemented for the pur-
pose of improving the availability of services that the
system provides [3], [45], [47], [50]. Examples of
software systems supporting high availability cluster-
ing are the HA-Linux, HA-OSCAR, Distributed Repli-
cated Block Device (DRBD), and FT-MPI. Load bal-
ancing clusters use one or more load-balancing front
ends to distribute workload to a collection of back
end servers. The Beowulf-based cluster systems us-
ing OSCAR or Rocks are examples of load balancing
clusters. The high performance clusters provide in-
creased performance by splitting a computational task
across many different nodes in the cluster. The dis-
tinction between all three categories is very subtle,
high performance and load balancing are characteris-
tics of high availability cluster systems. High avail-
ability is crucial in high performance computing. The
last of the RAS concept is serviceability and it is de-
fined as the ease with which corrective maintenance or
preventative maintenance can be performed on a sys-
tem. Clearly, serviceability improves system availabil-
ity and reliability.

Redundancy or replication, group communication and
virtual synchrony play central role in the design and
implementation of high availability clusters. Redun-
dancy or replication would be discussed in this sec-
tion and group communication and virtual synchrony,
in the following sections.

There are three levels of replications that are essential
in the description of high availability - cold standby,
warm standby and hot standby. The cold and warm
standby are also called passive replication and hot
standby, active replication. In the case of cold standby,
the redundant (or secondary) component serves as
a backup and it is only activated whenever the pri-

mary component fails. The secondary system receives
scheduled backups and it is initialized to enter service
to accept rollback to the last consistent and commit-
ted state of the failed server. The warm standby model
is similar to cold standby, except that the scheduled
backups are done more frequently, mirroring the pri-
mary system at regular intervals. In the hot standby,
the redundant (or backup) server runs concurrently
with the primary component, mirroring the primary
server in real time so that both servers contain iden-
tical information. Many software systems supporting
high availability and implementing passive and active
replication model or their combinations have been de-
veloped recently. Majority of these HA systems run
on the open source Linux operating systems and many
have claimed success in mission-critical applications.
Existing HA systems (HA-OSCAR, Linux-HA, and
ShaoLin HA Cluster) support two server nodes, one
primary and the other cold or warm or hot standby
server node [4]-[15].

3 Group Communication Service

Distributed systems are commonly described ab-
stractly as consisting of the application layer at the top
level and communication network layer at the bottom
layer and the centralized level or middleware, made of
the group communication layer. The centralized group
communication layer simulates the group communica-
tion service (GCS) and it is critical in the design of dis-
tributed systems. The group communication service,
sometimes called view-oriented group communication
service, has been an active research in distributed com-
puting for more than two decades. The terms group
membership service and process groups have been
used to describe group communication. Without loss
of generality, we would use group communication ser-
vice in this paper. Distributed computing devises algo-
rithms for a set of processes that seek to achieve some
form of cooperation [2], [1], [16]-[21], [29]-[44]. The
distributed system may permit some of the processes
to fail, leave or join; reconstituting a new set of pro-
cesses for the group. This complicates algorithms sup-
porting group communication service. GCS provides
two key services, namely, a membership service and
a multicast service. The multicast service is a means
by with the processes in the group communicate with
each others, while the membership service provides
a tracking mechanism for processes currently in the
group (the view) [42], [44], [46]. Depending on the

application, the multicast service may be replaced with
broadcast service, in which case, all processes in the
group are expected to receive the same requests. In a
multicast service, requests are received by a selected
number of processes in the group. The terms primary
partition and partitionable group membership service
are used to distinguish group communication services
allowing single view of a group (broadcast) and multi-
ple views of the group (multicast), respectively. How-
ever, it must be pointed out that the distinction between
broadcast and multicast have not be made clear. The
view of a group is the collection of the current partici-
pating processes within the group. A dynamic process
group is one in which group membership changes by
allowing processes to leave, join or be removed due
to failures. A primary partition process group desig-
nates a process group partition as the primary patition,
whose member processes are allowed to deliver mes-
sages. On the contrary, a partitionable process group
allows all processes to deliver messages regardless of
the partition they belong [40]-[44].

The concurrency in the operations of the processes in
GCS makes it an excellent candidate for replication,
which, as indicated in the preceding section, supports
high availability, making GCS a difficult problem to
tackle. It is not surprising that there are approximately
sixty-four group communication algorithms reported
in literature. Additional motivation for the support
of group communication service for high availability
systems stems from its ability to integrate failure de-
tection algorithms (hence, allowing for the construc-
tion of fault-tolerant dynamics necessary for RAS),
virtual synchrony (the topic for next section), and a va-
riety of other interesting semantics. GCS applications
include state machine or active replication; primary
backup replication; distributed and clustered operating
systems; distributed transactions and database replica-
tion; resource allocation; load balancing; system man-
agement and monitoring; and high available servers.
This section describes the specifications (also called
semantics) and implementation of group communica-
tion. The basic configuration of group communication
service will be presented as well as the safety and live-
ness properties required for the characterization of dif-
ferent group communication protocols or primitives.
We first provide definitions for basic group communi-
cation terminologies [2], [1].

We use the abstraction provided in [2], [1], [41], [42]
to describe group communication service. A group
communication service is assumed to compose stati-

cally of a set Π of N processes, uniquely identified as
p1, p2, . . . , pN . Processes communicate by exchang-
ing uniquely specified messages through communica-
tion links. A correct process is one that does not ex-
hibit faulty behaviors resulting from crash, omission,
timing or Byzantine failures; it must successfully exe-
cutes all assigned automaton, a sequence of local and
gobal events defining the algorithm of the process, ei-
ther within a bounded unit of time (synchronous al-
gorithm) or an unbounded time units (asychronous al-
gorithm). An event may involve one proces receiv-
ing a message from another process, executing a local
computation or sending a message from one process
to another. The performance of a distributed algorithm
is measured by the latency, the amount of time for a
message to be delivered from one process to the other,
bandwidth of the communication links, and through-
put, the speed at which local events are performed.
Performance analysis of the distributed algorithm(s)
described here would be presented in another report,
however, it is worth mentioning that while some re-
searchers have claimed successes in comperative study
using performance analysis for different group com-
munication services, much still need to be done in re-
search terms in this area. In the remainder of this sec-
tion we would discuss the reliable order and total order
broadcast algorithms; safety and liveness properties;
mechanisms for message ordering in group communi-
cation systems.

In describing the safety and the liveness properties,
we assume a static single process group view and for
simplicity, the events are represented by primitives,
namely, broadcast(m) (this is assumed to be exe-
cuted once) and deliver(m), where m is the message.
As indicated above, a message must be uniquely de-
fined by its original sender, (in this case, we define
an operation sender(m) to return the sender process
identifier), the sequence number assigned by the orig-
inal sender, local lock together with the process iden-
tifier [2], [1], [44].

Definition Process p ∈ Π broadcasts message m if p

executes broadcast(m).

Definition Process p ∈ Π delivers message m if p

executes deliver(m).

Using these two definitions and sender(m) we state
the safety and liveness properties [2].

Validity A correct process that broadcasts a mes-

sage m must eventually delivers it.

Uniform Agreement If a process p delivers a mes-
sage m, then every correct processes must deliv-
ers m.

Uniform Integrity Every process delivers message
m at most once only if m was previously broad-
casts by sender(m).

Uniform Total Order If process p broad-
casts messages m and m′, and q broadcasts m

and m′, then p delivers m before m′, if and only
if q delivers m before m′.

The safety properties include the Uniform Integrity
and Uniform Total Order properties, which when vi-
olated at time t would never be satisfied. Validity
and Uniform Agreement properties form the liveli-
ness properties, which means that these properties are
eventually guaranteed to hold at some time t′ ≥ t. A
�reliable broadcast group communication service is one
satisfying Validity, Uniform Agreement, Uniform In-
tegrity properties and a �total order broadcast or �atomic
broadcast group communication service satisfies all
four properties. Let dst(m) be the set of processes at
which m is delivered. We define total order broadcast
and multicast as

Total Order Broadcast dst(m) = Π for all m.

Total Order Multicast There exists a message m for
which sender(m) 6= dst(m) and messages mi

and mj for which dst(mi) 6= dst(mj).

There are non-uniform counterparts of Uniform
Agreement and Uniform Total Order properties that
permit only correct processes to deliver messages,
weakening the restriction placed on faulty processes.
To design fault-tolerant total order broadcast may re-
quire both uniform and non-uniform properties. While
we would not discuss non-uniform properties any fur-
ther, it must be remarked that these properties may be
beneficial in the design of RAS systems using group
communication service. Safety and liveness properties
do not guarantee the absence of contamination in cor-
rect processes, since it is possible for a faulty process
to reach an inconsistent state before crashing [2], [1].
Ordering properties are used to ensure that processes
deliver messages that may not lead to an inconsistent
state. Let tr(p) be the trace of process p, that is, the
set of all events at p, the following are the ordering
properties.

Gap-Free Uniform Total Order If some process de-
livers message m′ after message m, then a pro-
cess delivers m′ only after it has delivered m.

Prefix Order For any two processes p and q, either
tr(p) prefix tr(q) or tr(q) prefix tr(p).

FIFO Order If a correct process broadcasts m be-
fore m′, then no correct process delivers m′ be-
fore m.

Causal Order If the broadcast of m causally pre-
cedes m′, then no correct process delivers m′

before m.

Local Order If a process broadcasts m and a pro-
cess delivers m before it broadcasts m′, then
no correct process delivers m′ before m.

In a total order broadcast and multicast protocols,
the algorithms or primitives for ordering messages
are very important. As mentioned earlier, a message
is identified by its sender, destination or sequencer
process. Depending on the process group dynamics,
the sender and destination processes are easily deter-
mined. The sequencer process assigns a unique se-
quence number to the message. The order in which
messages are delivered is a crucial problem in group
communication service. While there are many mes-
sage ordering mechanisms, we focus on a few dis-
cussed in [41], [42] - fixed sequencer: a single process
is elected to serve as the sequencer for all messages,
there are three variants of this (unicast to broadcast,
broadcast to broadcast, unicast to unicast to broad-
cast); moving sequencer or token-based: amongst the
possible sender processes, one is elected to serve as
a sequencer for each message using token, where a
token passes from sender process to next, token-ring
approach has prominently been utilized for moving
sequencer; privileged-based: in this case, the sender
process broadcast messages only when granted the
privilege using the process of arbitration; communi-
cation history: uses timestamps in message delivery
while ensuring total order, two variants of this al-
gorithm are causal history and deterministic merge;
and destinations agreement: delivery order is based
on agreement amongst destination processes. Exist-
ing algorithms, Ameoba developed by kaashock and
Tanenbaum, MTP by Armstrong et al., Tandem by
Carr, Isis by Birmann et al., Phoenix by Wilhelm and
Schiper, Rampert by Reiter, use the fixed sequencer
algorithm; RMP by Whetten et al., DTP by Kim and

Kim, Pinwheel by Cristian et al., support the mov-
ing sequencer; On-Demand by Cristian et al., Train
by Cristian, Token-FD by Ekwell et al., Totem by
Amir et al., TPM by Rajagopalan and McKinley, RT-
CAST by Abdelzaher et al., MARS by Kopetz et al.,
are privileged-based algorithms; Lamport by Lamport,
Psync by Peterson et al., Newtop by Ezilchelvan et
al., Trans-Total by Moser et al., ATOP by Chockler et
al. CORel by Keida and Dolev, Deterministic Merge
by Aguilera and Strom, HAS by Cristian et al., are
based on communication history; Skeen by Birman
and Joseph, Prefix Agreement by Anceaume, Quick-
A by Berman and Bharali are destination agreement
algorithms.

We end this section by discussing in depth the New-
top protocol. In their motivation for Newtop (acronym
for Newcastle Total Order Protocol), Morgan and
Ezilchelvan [43] presented an interesting characteriza-
tion for replication, which, as previously mentioned,
offers high availability in the presence of failures.
They distinguished between request dissemination (D)
and reply collection (C), which are two guiding prin-
ciples of how messages are sent, delivered and replies
collected by replicas. D1 represents a situation in
which a request is sent directly to one replica called
request manager and D2, when the request is broad-
cast to the entire group. C0 denotes the case when the
sender waits for no reply; C1, the sender waits for one
reply; C2, the sender waits for all replies from destina-
tion processes; C3, the sender waits for replies from
a majority of the destination processes. R1 is used
to represent passive replication: a designated replica
server called primary executes the sender process’ re-
quest and multicasts to other replicas, note that, multi-
ple process groups are acceptable; R2, for active repli-
cation: all replica servers execute sender process’ re-
quest. O1 is used to denote asymmetric ordering: a
replica is designated to assume the responsibility of
ordering the messages; O2, to denote symmetric or-
dering: in this case, all members use the same de-
terministic algorithm for message ordering. A group
communication policy is formed by a combination of
attributes D, C, R and O. Clearly, R1 cannot combine
with C2 or C3, giving a total 24 different policies.
The Newtop protocol is based on partitionable process
group that allows different asymmetric and symmetric
message orderings in different groups. That is, mes-
sage ordering may be symmetric in one process group
and asymmetric in another. The protocol supports a
variety of group communication policies. A policy in-

cluding R2 have been successfully argued to support
high availability. It would be interesting to see perfor-
mance analyzes of several of the group communication
policies for high performance computing applications
in multiple process group situations.

4 Virtual Synchrony

Group communication services supporting virtual syn-
chrony are guaranteed to have identical set of mes-
sages delivered in the previous view of the process
group. In a virtual synchrony, membership change and
view are very important. In this section, we would dis-
cuss the various concepts of virtual synchrony and how
there are used to enhance group communication ser-
vice. A variation of virtual synchrony, called extended
virtual synchrony would also be described. What is the
hype about virtual synchrony and extended virtual syn-
chrony? Why has virtual synchrony been so important
in the development of group communication service?
Why it is necessary to enforce virtual synchrony in the
design of RAS for high performance computing? All
these questions and many more would be addressed in
this section.

A group communication service system that has a vir-
tual synchrony communications (VSC) [41] must have
in addition to the set of events or primitives for group
communication service describe the following: the
viewchng which returns new view of the process
group consisting of the current participating processes
while executing an event; send(m) and receive(m)
for point-to-point broadcast communications. Virtual
synchrony properties are

If a correct process p sends a message m to a correct
process q, then q eventually receives m.

For each message m, a process p receives m at most
once, and only if m was previously sent to p by
some process q.

If a correct process p broadcasts a message m, then
it eventually delivers m.

For each message m, each process delivers m at
most once, and only if m was broadcasted by
some process.

If a process (respectively, a correct process) p deliv-
ers m in view v, then all processes which are

either correct or faulty deliver in a view change
event v delivered m.

If a proces p delivers a message m in view v and a
process q broadcasts m in view v′, thenv = v′.

We have already seen that the first four properties are
satisfied by total order broadcast. The last two prop-
erties enforce virtual synchrony in a group communi-
cation service, guaranteeing that messages are deliv-
ered in the view they were sent and hence, support-
ing fault-tolerance necessary for building RAS sys-
tems. In virtual synchrony, processes installing new
view based on the previous view must have the same
messages received in the old view. Therefore, virtual
synchrony is essential for applications implementing
replication using state machine approach (active repli-
cation). According to Chockler, Keidar and Vitenberg
[1], a group communication system that supports vir-
tual synchrony allows processes to avoid state trans-
fer among processes that “continue together” from one
view to another. The extended virtual synchrony in-
troduces transitional set, agreement on successors and
safe message properties to virtual synchrony. A tran-
sitional set contains information that allows processes
to locally determine whether the virtual synchrony ap-
plies or a state transfer is required to create transitional
view. This is implemented in Tansis and Totem by
Moser et al. The agreement successors property en-
sures that every member process in the intersection of
p’s currrent view and p’s previous view is also coming
from the same view [3]. It is implemented in Horus by
Friedman and Vaysburg and Ensemble by Hickey et
al. The safe message property, implemented in Transis
and Totem, guarantees that a process p receives a mes-
sage m if the group communication service knows that
the message is stable, that is, all member processes in
the current view have received the message from the
network.

One can not overestimate the relevance of group com-
munication service that supports virtual synchrony and
extended virtual synchrony in RAS systems for high
performance computing. Symmetric active replica-
tion group communication service for high availabil-
ity clusters will benefit from consistency in message
delivery achievable in virtual synchrony and extended
virtual synchrony group communication service.

5 Fault-Tolerance

Building a group communication service that is fault-
tolerant requires mechanisms for detecting process
and message delivery failures and for taking correc-
tive and recovery measures for the failed processes.
Synchronous and asynchronous group communication
systems are categorized using the parameters, the pro-
cess speed interval,the difference between the speeds
of the slowest and fastest process; and communication
delay or communication latency [2]. While a syn-
chronous system places a bound on the parameters,
for asynchronous systems, these parameters are un-
bounded. By making values of these parameters to
be infinitesimally small, it is possible to have asyn-
chronous systems, called timed asynchronous systems.
Using oracles that processes can query, fault-tolerant
systems are constructed implementing timed asyn-
chronous systems. Failure detectors and randomized
values are examples of oracle. Failure detectors are
classified into perfect, eventually perfect, strong, and
eventually strong. All classes satisfy the property that
every faulty process is permanently suspected by all
correct processes. In the perfect class, processes are
not suspected before they crash and in the eventually
perfect, correct processes are not suspected by correct
processes after a specified elapsed time. In the strong
class, some processes are never suspected and even-
tually strong class, some correct processes are never
suspected after a specified elapsed time. Sometimes,
process controlled crash, where processes are given
the authority to kill other processes or commit suicide,
is used for failure detection [2], [42]. Fault-tolerant
systems are built using a combination of algorithms -
failure detection using oracles, group membership ser-
vice based on process-controlled crash integrated in
the virtual and extended virtual synchrony, message
stability using the technique of safe messages, con-
sensus amongst member processes, resilient patterns
and mechanisms for lossy channels. The failure detec-
tion, group membership service and message stability
approaches seem plausible for group communication
service for RAS-based high performance computing.

6 Preliminary Experience With Process
Groups Algorithm

The first author’s initial experience with group com-
munication service involves designing modules as de-

Applications

Group Communication Service

 Communication Network

Multicast/Broadcast
 Service

Group Membership
 Service

Virtual Synchrony
Extented Virtual Synchrony

Fault-Tolerance
Failure Detection

Figure 1. RAS Group Communication
Service.

picted in the figure above. This object-based modules
are the group membership service module, the multi-
cast and broadcast module, the virtual and extended
virtual synchrony module and the fault-tolerance and
failure detection module. The group membership
module includes objects for groups and processes. The
message queue is treated as a referential object, sup-
posedly to allow for easy deletion and insertion of
message object. The group object employs the queue
class to track process membership. Processes are al-
lowed to join or leave the group. While the imple-
mentations of these group behaviors are preliminary,
they would form the basis for future design and devel-
opment of group membership service for HPC. Every
process object keeps a record of its events, called the
trace, in a queue fashion. No ordering mechanisms
have yet been integrated; this would expectedly be in-
cluded when the multicast/broadcast, virtual and ex-
tended virtual synchrony and failure detection mod-
ules have been completed.

Symmetric active replication model will be favored in
RAS systems for high performance computing. This
is because symmetric active replication enables fault-
tolerance necessary for RAS. The model shown in the
figure would support symmetric active replication by
ensuring that the group communication service when

successfully implemented would consist of character-
istics of all four modules - effective group membership
service integrated with virtual synchrony and failure
detection and efficient multicast/broadcast service that
would support both virtual synchrony and failure de-
tection.

References

[1] G. V. Chockler, I. Keidar, and R. Vitenberg,
Group communication specifications: A com-
prehensive study, ACM Computing Surveys,
33(4):1-43, 2001.

[2] X. Défago, A. Schiper and P. Urbán, Total Or-
der Broadcast and Multicast Algorithms: Tax-
onomy and Survey, ACM Computing Surveys,
36(4):372-421, 2004.

[3] C. Engelmann and S.L. Scott, High Availabil-
ity for Ultra-Scale High-End Scientific Comput-
ing, in Procs. of 2nd International Workshops on
Operating Systems, Programming Environments
and Management Tools for High Performance
Computing on Clusters, Cambridge, USA, June
2005.

[4] Chokchai Leangsuksun, Tong Liu, Stephen L.
Scott, Richard Libby, and Ibrahim Haddad, HA-
OSCAR Release 1.0: Unleashing HA-Beowulf,
in Proceedings of 2nd Annual OSCAR sympo-
sium, Winnipeg, Manitoba Canada, May 2004.

[5] Chokchai Leangsuksun, Lixin Shen, Tong Liu,
Herton Song, and Stephen L. Scott, Availabil-
ity Prediction and Modeling of High Availabil-
ity OSCAR Cluster, in Proceedings of IEEE
International Conference on Cluster Computing
2003, Hong Kong, December 2003, p. 380.

[6] Chockchai Leangsuksun,Tong Liu, Stephen L.
Scott, and Lixin Shen, High-Availability and Per-
formance Clusters: staging strategy, self-healing
mechanism, and dependability, in Proceedings of
HPC 2003, Sherbrooke, Canada, May 2003.

[7] Chokchai Leangsuksun, Lixin Shen, Tong Liu,
Herton Song, and Stephen L. Scott, Dependabil-
ity Prediction of High Availability OSCAR Clus-
ter Server, in Proceedings PDPTA 2003, Las Ve-
gas, June 2003.

[8] G. K. Thiruvathukal, Cluster Computing, Com-
puting in Science & Engineering, vol. 7, no. 2,
2005, pp. 11-13.

[9] Thomas Naughton, Stephen L. Scott, Yung-
Chin Fang, Phil Pfeiffer, Benoit Des Ligneris,
Chokchai Leangsuksun, The OSCAR Toolkit:
Current and Future Developments, Dell Power
Solutions, November 2003, pp. 29-34.

[10] Chokchai Leangsuksun, Herton Song, and Lixin
Shen, Reliability Modeling Using UML, in Pro-
ceedings of the 2003 International Conference
on Software Engineering Research and Practice,
Las Vegas, June 2003.

[11] John Mugler, Thomas Naughton, Stephen L.
Scott, Brian Barrett, Andrew Lumsdaine, and
Jeffrey M. Squyres, OSCAR Clusters, in Pro-
ceedings of the Linux Symposium 2003, Ottawa,
Canada, June 2003.

[12] Chokchai Leangsuksun, Anand Tikotekar,
Makan Pourzandi, and Ibrahim Haddad, Fea-
sibility Study and Early Experimental Results
Towards Cluster Survivability, in Proceedings
of the First International Workshop on Cluster
Security, Fifth IEEE/ACM International Sym-
posium on Cluster Computing and Grid 2005,
Cardiff, UK, May 2005.

[13] Kshitij Limaye, Box Leangsuksun, Venkata K.
Munganuru, Zeno Greenwood, Stephen L. Scott,
Richard Libby, Kasidit Chanchio, Grid-Aware
HA-OSCAR, in Procs of HPCS, pp.333-339,
2005.

[14] Chokchai Leangsuksun, Tong Liu, Yudan Liu,
Stephen L. Scott, Richard Libby, Ibrahim Had-
dad, Highly Reliable Linux HPC Clusters: Self-
Awareness Approach, Lecture Notes in Com-
puter Science, Volume 3358, Nov 2004, Pages
217 - 222.

[15] Ibrahim Haddad, Chokchai Leangsuksun, and
Stephen L. Scott, HA-OSCAR: the Birth of High
Available OSCAR, Linux Journal, November
2003.

[16] Idit Keidar, Jeremy Sussman, Keith Marzullo and
Danny Dolev, A Client-Server Oriented Algo-
rithm for Virtually Synchronous Group Member-
ship in WANs, in Procs. of the 20th International
Conference on Distributed Computing (ICDCS),
pp. 356- 365, April 2000.

[17] W. Vogels and R. van Renesse, Structured Vir-
tual Synchrony: Exploring the Bounds of Vir-
tually Synchronous Group Communication, in
Proceedings of the 7th ACM SIGOPS Euro-
pean Workshop, Connemara, Ireland, September
1996.

[18] L. Rodrigues, K. Guo, A. Sargento, R. van Re-
nesse, B. Glade, P. Verisimo and K. Birman, A
Transparent Light-Weight Group Service, in Pro-
ceedings of the 15th IEEE Symposium on Reli-
able Distributed Systems, pp.,130-139. Niagara-
on-the- Lake, Canada, October 1996.

[19] L. Rodrigues and K. Guo, Partitionable Light-
Weight Groups, in Proceedings of the 20th IEEE
International Conference on Distributed Com-
puting Systems, April 2000.

[20] L. Rodrigues, K. Guo, P. Verissimo and K. Bir-
man, A Dynamic Light-Weight Group Service,
Journal of Parallel and Distributed Computing,
Vol 60, pp. 1449-1479, December 2000.

[21] R. van Renesse, K. Guo, K. P. Birman, B. Glade,
M. Hayden, T. Hickey, D. Malki, A. Vaysburd
and W. Vogels, Horus: A Flexible Group Com-
munications System, Computer Science Techni-
cal Report CS-TR 95-1500, Department of Com-
puter Science, Cornell University, March 1995.

[22] C. Engelmann and S. L. Scott, High Availability
for Ultra-Scale High-End Scientific Computing,
in Proceedings of 2nd International Workshop on
Operating Systems, Programming Environments
and Management Tools for High- Performance
Computing on Clusters (COSET-2), Cambridge,
MA, USA, June 2005.

[23] C. Leangsuksun, V. K. Munganuru, T. Liu, S.
L. Scott and C. Engelmann, Asymmetric Active-
Active High Availability for High-end Comput-
ing, in Proceedings of 2nd International Work-
shop on Operating Systems, Programming En-
vironments and Management Tools for High-
Performance Computing on Clusters (COSET-2),
Cambridge, MA, USA, June 2005.

[24] C. Engelmann, S. L. Scott and G. A. Geist, High
Availability through Distributed Control, in Pro-
ceedings of High Availability and Performance
Computing Workshop (HAPCW), Santa Fe, NM,
USA, October 2004.

[25] C. Engelmann, S. L. Scott and G. A. Geist, Dis-
tributed Peer-to-Peer Control in Harness, in Pro-
ceedings of International Conference on Com-
putational Science (ICCS), Amsterdam, Nether-
lands, April 2002, 720-728.

[26] C. Engelmann, Distributed Peer-to-Peer Control
for Harness, Master Thesis at the Department of
Computer Science of the University of Reading,
Reading, UK, February 2001.

[27] D. Doley and D. Malki, The Transis approach
to high availability cluster communication, Com-
munications of the ACM, vol. 39(4), 1996, pp.
64-70.

[28] G. Chockler, D. Malkhi and D. Dolev, State-
Machine Replication with Infinitely Many Pro-
cesses: A position Paper, in Proceedings of the
International Workshop on Future Directions in
Distributed Computing, Bertinoro, Italy, 2002.

[29] K. Birman and T. Joseph, Exploiting virtual syn-
chrony in distributed systems, in Proceedings of
the eleventh ACM Symposium on Operating Sys-
tems Principles, 1987, pp. 123-138.

[30] Xiaoming Liu, Christoph Kreitz, Robbert van
Renesse, Jason Hickey, Mark Hayden, Ken
Birman, and Robert Constable, Building Re-
liable, High-Performance Communication Sys-
tems from Components, in Proceedings of the
17th ACM Symposium on Operating System
Principles Kiawah Island Resort, SC, December
1999.

[31] K. P. Birman, A Review of Experiences with Re-
liable Multicast, Software Practice and Experi-
ence, Vol. 29, No. 9, pp, 741-774, July 1999.

[32] R. van Renesse, S. Maffeis, and K. Birman, Ho-
rus: A Flexible Group Communications System,
Communications of the ACM, 39(4):76-83. Apr
1996.

[33] Katherine Guo, Robbert van Renesse and Werner
Vogels, Structured Virtual Synchrony: Explor-
ing the bounds of Virtual Synchronous Group
Communication, in Proceedings of the 1996
ACM SIGOPS Workshop, Connemora, Septem-
ber 1996.

[34] E. Moser, Y. Amir, P. M. Melliar-Smith, and D.
A. Agarwal. Extended virtual synchrony, in Pro-

ceedings of the 14th IEEE International Confer-
ence on Distributed Computing Systems, pages
56–65, Poznan, Poland, June 1994.

[35] Idit Keidar and Roger Khazan, A Client-Server
Approach to Virtually Synchronous Group Mul-
ticast: Specifications and Algorithms, in Proc-
ceedings of the International Conference on Dis-
tributed Computing Systems, pp.344–355, 2000.

[36] F. B. Schneider, Implementing Fault-Tolerant
Services Using the State Machine Approach: A
Tutorial, ACM Computing Surveys, 22(4), De-
cember 1990, pp.299-319.

[37] F. Cristian, H. Aghali, R. Strong and D. Dolev,
Atomic Broadcast: From Simple Message Dif-
fusion to Byzantine Agreement, in Proc. 15th
Int. Symposium on Fault-Tolerant Computing
(FTCS-15), (Ann Arbor, MI, USA), pp.200-206,
IEEE Computer Society Press, June 1985.

[38] M. Baker and R. Buyya, Cluster Computing at
a Glance, in High Performance Cluster Comput-
ing: Architectures and Systems, R. Buyya (eds.)
Vol. 1, 1/e, Prentice Hall, NJ, USA, 1999.

[39] J.-M. Chang and N.F. Maxemchuk, Reliable
Broadcast Protocols, ACM Transactions on Com-
puter Systems, vol. 2, No. 3, pp. 251-273, 1984.

[40] M. F. Kaashoek, A. S. Tanenbaum, S. F. Hum-
mel, and H. E. Ball, An Efficient Reliable Broad-
cast Protocol, Operating Systems Review, 23(4),
p.5-19, 1989.

[41] R. Baldoni, S. Cimmino, and C. Marchetti, Total
Order Communications over Asynchronou Dis-
tributed Systems: Specifications and Implemen-
tations, Technical report - Dipartimento di In-
formatica e Sistemistica A.Ruberti, Universitá di
Roma la Sapienza - 2004

[42] X. Défago, A. Schiper, and P Urbán, Compara-
tive Performance Analysis of Ordering Strategies
in Atomic Broadcast Algorithms, IEIEC Trans.
Inf. & Syst., 89(12), 2003.

[43] G. Morgan and P. D. Ezilchelvan, Policies for us-
ing Replica Groups and their effectiveness over
the Internet, in Proceedings of NGC 2000 on Net-
worked group communication, Palo Alto, Cali-
fornia, p. 119-129, 2000.

[44] R. Guerraoui and L Rodrigues, Introduction to
Reliable Distributed Computing, (preliminary
draft), 2005.

[45] J. D. Sloan, High Performance Linux Clus-
ters with OSCAR, Rocks, openMosix and MPI,
O’Reilly, 2005.

[46] J. L. Schultz, Partionable Virtual Synchrony Us-
ing Extended Virtual Synchrony, Masters’ The-
sis, John Hopkins University, 2001.

[47] R. R. Resnick, A modern taxonomy of high avail-
ability, 1996.

[48] http://www.webopedia.com/, Jupitermedia Cor-
poration, 2004

[49] D. Oestreicher A Simple Reliable Globally-
Ordered Broadcast Service, ACM SIGOPS Op-
erating Systems Review, 25(4):66-76, 1991

[50] http://en.wikipedia.org/wiki/Computer-cluster,
2004.

[51] Scientific Computing 2003 Conference High End
Computing Revitalization Task Force (HECRTF)
Panel Report, 2003.

	Exploring Process Groups for Reliability, Availability and Serviceability of Terascale Computing Systems
	Recommended Citation

	tmp.1138283799.pdf.3ynng

