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The phase diagram of small one-component particles has been analyzed under conditions of thermal
insulation, i.e., conservation of energy. In large isolated systems the absolute stability belongs to
heterogeneous states with phase separation. However, for small particles the global stability analysis
shows a considerable extension of the single-phase regions into a two-phase zone of the phase
diagram. Moreover, for very fine particles with sizes only 5-20 times exceeding interfacial
thickness, phase separation does not occur at all and the equilibrium is achieved on homogeneous
transition states that careverbe obtained in bulk samples because of their absolute instability. The
thermodynamic and dynamical explanations are presented. This type of a small-particle phase
diagram may be relevant to the theory of amorphization, magnetocaloric effect, and nanophase
composite materials where small particles or thin whiskers, capable of undergoing a transition, are
immersed into a poorly conducting matrix. In case of small particles of solid solution, where mass
conservation replaces the conservation of energy, present results predict the appearance of new
stable phases with compositions deeply inside the miscibility gap19@7 American Institute of
Physics[S0021-960807)51129-9

I. INTRODUCTION with the chemical equilibrium of different species as op-
posed to thermal equilibrium of a one-component system.
It has been known for many years that it is possible towhatever the reason is, thus far very little can be found in
produce small metal particles that have structures unparallghe literature related to transformations in closed sysfetis.
to the ones encountered in the bulk. Ultrasmall geometrieg is the intention of the author partially to cover this gap.
can force a system to act in ways significantly different to  Consider a sample of a high-temperature ptiasg, wa-
how it behaves without geometrical constraints. Some recengr) being cooled down below the melting temperature. So
observations even suggest that small particles fluctuate b@repared phase is said to be supercooled. A slight fluctuation
tween different(maybe heterogeneoustates, rather than may initiate a precipitous transition into a low-temperature
“sit in a fixed position.” The unique character of small sys- phase(e.g., ice. However, the course and outcome of such a
tems not only provides ways to make new materials but als@ransition will be different depending upon the type of inter-
allows further investigation of the secrets of phase transiactions of the system with the environment. In the system
tions. Until now equilibrium and dynamical properties of that has been isolated from ambient objects after preparation,
systems in confined geometries have been studied mainly ithe transition is driven by the possibility to increase the total
isothermal conditions. However, real transformations rarelyentropy which emerges if energy of the system after prepa-
occur under conditions of constant temperature because thation is below the equilibrium energy of the high-
mechanism of temperature equilibration, that is thermal contemperature phase. This energy difference may also be ex-
ductivity, cannot be infinitely fast. It is the intention of the pressed by the deviation of the initial temperature from its
author to analyze the behavior of such systems under thequilibrium value, that is the supercooling.
conditions of thermal insulation. This may be the case for In the next section large isolated systems are considered
composite materials where nanoscale particles or whiskemshere the finite size effects are negligible. Although many of
are immersed in a poorly conducting matrix which makesthese results may be found in Refs. 3—7, we find it appropri-
them effectively insulated, in porous media, or for submicronate to lay them out here in a form pertinent to the present
metal droplets that have been sprayed in high vacuum bygliscussion. Recently the author analyzed the thermody-
some kind of atomization technique. Before dwelling on con-namic stability of equilibrium states under conditions of ther-
fining geometries it is advantageous to analyze the basimal insulation at constant pressure and showed that in the
ideas of transformations in large thermally insulated systemthermodynamic limit, besides homogeneous phases, phas-
which will be conducive to understanding the peculiarities ineseparating interfaces may also be locally staffesta-
small particles. stableg, i.e., with respect to small perturbations. However, a
The basic idea of equilibrium in insulated systems hadocal analysis is hardly enough, particularly in systems where
been formulated by Clausius “in the following simple form: several different states may be stable under the same condi-
1. The energy of the universe is a constant. 2. The entropy dfons. In order to construct the phase diagram one needs to
the universe tends toward a maximurhl”ater Gibbs devel- complete the local stability analysis with the global stability
oped this idea into an elaborate theory of heterogeneousnalysis, i.e., with respect to all possible variations. In Sec. Il
substance$ However, some points are missing in his theorythe global analysis of stability of states in an isolated system
because Gibbs and followers, €35’ were mainly concerned at constant volume is represented in the form of the general
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condition of bifurcation of locally stable states. From the statistical mechanics stand point small isolated

A special remark should be made regarding the ternsystems correspond to a microcanonical ensemble and can be
isolated systerwhich will be used extensively in our subse- studied by different methods: cluster variation, molecular dy-
quent discussion. According to the first law of thermodynam-hamics, or Monte Carlo for small clusters. In the present
ics the change in the internal energy of a body is a consepaper the mean-fieltcontinuum method is employed. This
qguence of both heat given to the body and work done on itmethod was originally introduced for the analysis of bulk
In the present study, isolation means that energy of the sysystems undergoing phase transformations but can be suc-
tem is conserved, hence, this implies invariable volume of &essfully extended to small confining thermodynamic sys-
system(no external fieldsand thermal insulation from the tems. On the atomic level, phase transition is viewed as a
surrounding bodie$no heat fluxes™? To specify the inter- cooperative motion of atoms which results in the change of
actions of the system with environment, the constraint ofatomic configuration in the long range. To characterize this
constant volume is chosen which makes the present studgyrocess on the mesoscopic scale, the “coarse-grained” vari-
relevant to transformations in condensed mafselids and able is introduced. It is called a transition parameter and
liquids) as opposed to gaseous media where the constraint fesignates a degree of transition in a small piece of a mate-
constant pressure is more applicable. In fact, of a particulafial. The transition itself is manifested by the “crossing of a
interest for us will be an incompressible motionless mediunparrier” separating different phases. Same atomic interac-
where work vanishes even for each element of the systentions that are responsible for transition make the medium
However, internal heat fluxes are permissible during theeffectively non-local in the sense that there is a certain pen-
course of transformation which makes it non-equilibrium andgalty if neighboring pieces attain different degrees of transfor-
non-adiabatic. A completely adiabatic transformation can bénation. Section IV deals with systems of small sizes where
realized in the special material with vanishing thermal con-creation of an interface is not favorable. As a consequence, a
ductivity inside (ideal insulatoy. A transformation will also hew phasehat is prohibited in large systems is found pos-
be adiabatic if it is carried out so fast that different parts ofsible. This result is the main thrust of the present paper. In
the system have no time for thermal equilibratidn? Yet, ~ Sec. V comparison with other studies is made which is fol-
the state of the system after completion of transformatiodowed by the discussion in Sec. VI.
(thermodynamic equilibriumwill be of our concern in the
present study. Another remark should be made with regard to
the denotations used in the paper: when subscripts and su-
perscripts are used together with thermodynamic functions; |SOLATED SYSTEMS IN THE THERMODYNAMIC
the former will refer to the state of the system and the lattei_ imiT
to its temperature.

Much progress has been recently made in studying size We consider a physical system composed of a large
effects in open systems. These effects can be separated imtamberN of identical particles(typically of the order of
two different groups: those which are due to the presence df0?®) confined to a space of volumé. At first the analysis
the surface restraining the bodfy;*® and those which are will be carried out in the so-called thermodynamic limit, viz.,
due to the existence of precursors to the transition in th&—o, V—oo, such that the ratidN/V stays fixed. In this
form of heterophase fluctuatioh$?® Usually the former ef- limit, a system possesses two types of properties: extensive,
fects can be assessed by the introduction of the “extrapolahose which are directly proportional to the size of a system,
tion length” and vanish at a free surface where the extrapot.e., N or V, and intensive, those which are independent
lation length diverges. The latter effects are manifested in théhereof. At this point it is advantageous to give a brief defi-
emerging of a narrow region of phase coexistence around thation of a phase. We shall call a phasd@mogeneoupart
equilibrium temperature and may be addressed by introdumf a system distinguishable by a set of intrinsic parameters,
ing a “scaling ansatz” which specifies the singular part of which has attained tnhermodynamic stabilitunder specified
thermodynamic functions. In the case of the first-order transexternal conditions. The latter may well affect the equilib-
formations both types of effects yield an equilibrium- rium, making different states of the system more favorable.
temperature shift inversely proportional to the system’s sizeln the present study closed systems are analyzed which are
The present study concentrates on first-order phase transfdsolated from all external influences. The achievement of lo-
mations in closed systems where phase coexistence is ratheal thermodynamic stability does not exclude a possibility
a norm than a fluctuation as in open ones. Therefore, ofor a system to be in a metastable stateetastable phage
particular interest is the influence of an internal interfaceExcept for homogeneous states, that is phases, various het-
separating two coexisting phases. For the outer boundariesogeneous states may be possible. To obtain a complete
we shall assume the free surface conditions. In Sec. Il theicture of equilibrium states in an isolated system the analy-
influence of the interfacial energy of a region that separatesis of local stability, when a state is being verified with re-
the phases on the phase diagram is considered in the capdlpect to the infinitesimal variations only, should be supple-
lary approximation which sheds light on the problem of re-mented with the global stability analysis, when the variations
construction of heterogeneous systems in insulation and comf higher order are not to be neglected. Thus the Gibbsian
finement. Where relevant, juxtaposition with isothermal‘Criterion of Equilibrium and Stability” may be reformu-
systems is made. lated as follows:
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1602 Alexander Umantsev: Adiabatic phase transformations

Among all possible states of an isolated system bined energies of individual phases are added. The entropy
) of the combinedheterogeneoyssystem cannot be less than
the one which has more entropy for the same the sum of equilibrium entropies of the separate phases, oth-
energy is the most stable. (1) erw?s_e phases will stay unrelaxepl, see criteri@n _For_ a
o o o ~sufficiently large system we can ignore the contribution of
This is a criterion of the global stability when the variations the internal interface separating the coexisting phases, if such
of all orders must be taken into account. It may be called thgye present, and thermal fluctuations in the systevarmo-
equilibrium selection principle because it allows one to dis-gynamic limit. Then, for the heterogeneous state represent-
tinguish between several otherwise equivalently stable equing a mixture ofa andg phases, the condition of equilibrium

librium states. N and stability(1) takes the form
To begin with, we shall analyze the stability of a homo-

geneous system occupied by one of the possible phases, the S=Sa(€a)VaTSs(€4)Vs— maximum, ©)
number of which, for simplicity, will be reduced to the mini- gypject to the side conditions of conservation of energy
mum (« andB) in this study. Each phase is characterized by

its own entropy-versus-energy functiey{e;), that is Mollier E=e,V,tezVg=const (4)

chart>~’ wheres; anplej are entropie; and_energies per unit 5nd volume

volume of the phas¢=«a or 8. We will define theequaen-

tropic pointto be the energy density,; such that V=V,+Vg=const . 6)
Sa(€4p) = Sp(€up). (20  The constraintg4) and (5) manifest the absence of energy

and mass fluxes into or out of the system and reflect the
isolation of our system from ambient bodies. Heve,is a
volume of the phas¢ which must be neither negative nor

reater than the whole volume of the syst&m yet may
%‘anish. Phase transformation is manifested in the variation of
one of these volumes at the expense of the other and may be
characterized by the fraction of the phg3én the heteroge-
neous state

Without loss of generality, we suppose thaphase is more
stable for high energies,>s; for e>e,; and g-phase is
more stable for low energies; <s; for e<e,z. Hence, the
entropy-versus-energy function of a homogeneous syste
sy(e) consists of the pieces of the individual curvesxadind
B phases joined at the equaentropic p&ipy, thus having a
cusp at the latte¢Fig. 1).

Different parts of the system may be occupied by differ-
ent phases of the matter. If homogeneous phasesare e=VglV. (6)

According to the theorem of the conditional extremum,
there exist constants and u (Lagrange multipliers such
that the functionS+XE+ uV has an unconditional extre-
mum. Taking into account that, is a function ofe, only
andsg is a function ofe; only we arrive at the following

conditions®~’
ds, ds
A== Y
de, deg
—u=S,t\e,=Sgt\ez. (8)

average entropy § ——>

Besides being general conditions of equilibrium between two
bodies that are in contact with each other, Eg$.and (8)
determine energy densities of coexisting phases if entropy
densities of these phases are known as functions of the
former. Equation(7) means that at the energies of coexist-
ence,e and eg, these functions have same slopes of the
tangent lines. Equatiof8) means that the coordinates of one
phase, e.g.,ﬁ, sg), belong to the extension of the tangent
line to the entropy function of another phasg(e,), at the
point of coexistenceef,, sF,). Thus at the equilibrium,
0 entropy-density-versus-energy-density functions of coexist-
ing phases are connected by the common tangent. Obviously,
FIG. 1. Mollier chart. Average entrop;of a layer as a function of its the equaentropic point lies between the equ"ibrium energy
average energy for different phase states of the thermodynamic system wighensities of the two phases
Q=0.1. @ and B—bulk phasesy—adiabatic nanophase; 1,2,3—two-phase E E
states; 1—very thick layefthermodynamic limi; 2—thin layer (capillary €5<€,5<8€,. 9
approximation; 3—very thin layer(continuum theory: Insert: Difference of . .
the entropy densities of and « states. The transition state is locally stable There is another way of looking at E¢g) and(8): They
beyond the poinM =1 and globally stable beyors,, . demonstrate which quantities are actually equilibrated be-

E
e=-L Epr € €y €, Cu e
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tween phases at equilibrium. The conditigh is a standard of the function entropy-per-unit-volume versus energy-per-
definition of the temperature of bodies at equilibrium ynit-volume, s(e), of the system at equilibrium which is
Te=—1/\. The condition(8) demonstrates that at equilib- depicted on the Mollier chart. Homogeneous states of the
rium the free energy densities efand 8 phases, defined as system are represented in this function by their densities
fi=e—Ts, are equal. Combined together, E(B.and(8) s(e)=sj(e) and heterogeneous states—by theirerage
allow to determine the equilibrium temperatufg of the o eafa) — ANV whereE/V=e is the ener
coexisting phasés’ quantities: s (€) = S(E/V)/V, wh . 9y
density of the parent phase prior to transformation, see Eq.

fo(Te)=f4(Te). (100 (11). According to the criteriori1), for the decomposition of

the phaser to go, it should be thas (e°) >s_(e°). Invoking

Consider a first-order transformation from a one- Egs. (7). (8), (10), and (12) and the fact that energy of a

component phase insulated from other substances. Havin : . . :
o L0 able bulk phase is a growing function of its temperature,
initial energy densitye”, the parent phase may become ca- . o2

we arrive at the condition:

pable of decomposing into a mixture of phases. As the pro-
cess in question proceeds under conditions of insulation, the dsa(eE) sa(eE)—sa(eo)
total energy of the system stays constant during the transfor- E_g0 (15
mation and is determined by the initial energy density of the “«
parent phase which manifests the convexity of the thermodynamic func-

E—ely (11) tion entropy-versus-energy of thephase at the equilibrium

' point sa(eE). Evidently, the same analysis is applicable to

Thus Egs(3)—(6), (10), and(11) yield the expression for the the phase8 which results in the convexity of the function

de, e

total entropy of the system after transformation sﬁ(eg) at the equilibrium point. All pieces of the function
1 s(e) that belong to homogeneous phageand 3 are prop-
S B:T—[E—fa(TE)V] (12 erly convexed which is guaranteed by the positivity of the
E

specific heat, Eq(14). However, the functiors,(e), which
and the “lever rule” for the fractionp of the phasgs in the ~ consists of the “homogeneous pieces” afand g phases

equilibrium heterogeneous+ 8 mixture joined together at the equaentropic point, is not convex in the
0 E vicinity of this point. To convexify this function the common
1, e'seg tangent construction, Eg$7), (8), (12) and (13) are used.
eE—eo E o & The physical meaning of this procedure consists in the sepa-
ve=| Fo e ep=e’=e. (13 ration of the system into a heterogeneous mixture of two
@ =B phases. Then the condition of equilibrium and stabilBy~
0, e’=ef (5) takes the form

The total entropy of the mixture is a linear function of the
total energy of the systerfEq. (12) and line 1 in Fig. 1
because the temperature is uniform throughout the systermhis condition means that in the thermodynamic lirsite)

and equal toTg, Eq. (7). As the fraction of a heterostate is aconvex upwardunction of energy. Equality here is at-
must be B<e<1, Eq. (13 curtails initial energies of the tained at the equilibrium fractiopg , Eq.(13). Thus one can
parent phase that result in the creation of a state with phassee that the average-entropy versus average-energy function

s[ee;+(1—g)es]=gs(e)+(1— ) s(ey).

coexistenceeg<e’<e: . 3 's(e) is convex upwardgeverywhere.
Temperaturdl and the specific heat for constant volume  The pasic features of transformations in isolated systems
Cy of a heterostate are defined as followé: can be elucidated on the Mollier chafentropy-versus-
-1 dE d2s)| 1 energy plot, Fig. 1 where entropies of different possible
T= E) i VCy= T 2@> (149 states are represented as functions of their energies on a per-

unit-volume basis. For definiteness, below will be considered
They have evident interpretation on the Mollier chart as bea transformation from a high energy phase The curves
ing inversely proportional to the slope of the tangent linerepresenting homogeneous phases intersect at the equaen-
(temperaturpand curvature of the pldispecific heagt As a  tropic pointe,;, see Eq(2). The straight line representing
consequence of E412), a heterostate at equilibrium has the the o+ 8 mixture, Eq.(12), is tangential to both single-phase
same temperatur€g for all energies and possesses an infi-curves. The points of tangencag and eg and the equaen-
nitely large specific heat, i.e., may accumulate a certairtropic pointe,; break the energy axes down into four dif-
amount of heat without any temperature raise, although th&rent regions, cf. Eq9): (i) For the average energy density
volume of the system is limited. Obviously, this happensaboveei the transformation does not go and the system stays
because the fractiog of the state changes. in the parent phasdji) For the average energy density be-
In the thermodynamic limit entropy and energy are ex—tweeneE ande,; the system decomposes into two phases
tensive variables, that is they grow linearly with the size ofand of fixed energie®f andeg, and their relative propor-
the system if other characteristics, like temperature or fractions are given by the lever rule, E(L.3); (iii) For the aver-
tion, do not change. We shall study now analytical propertiesge energy density betweep, andeg the equilibrium state
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1604 Alexander Umantsev: Adiabatic phase transformations
also contains two phasesand 3 of fixed energies’, eg Such definitions are inspired by the fact that temperatures of
and relative proportionpg. However, the transformation all the components of a heterostate at equilibrium are equal,
path may pass through thmetastablehomogeneous sta@  Eq. (7). For homogeneous states we may use the excess den-
with the temperature above equilibriumal, and the systensitiesA{e,s,f}, thatis, the excess quantities per unit volume.
may betrappedthere. The real scenario of transformation AF(T,V) may be either positive or negative. A transfor-
depends upon kinetic properties of the systéim). For the  mation into a state witlh F <0, as exemplified by the homo-
average energy density beloe,E, only phaseg will be geneousa— B transformation at temperatures beldwg,
present in the system after transformation. It is curious tanay occur in an open, that is, isothermal, system. In this
inquire why in the regionsi) and(iv) only “pure,” that is  case,—AF/V is called the driving force and is usually pro-
unmixed, states exist, although the straight line correspondgsortional to (Te—T). On the other hand, a state with
ing to the o+ B mixture lies above the individual curves of AF(T,V)>0 must not be a terminal state of transformation
pure states. The answer is in the lever ridl8), which gives  in an open system of temperaturend may serve only as an
negative fractionp for the region(i) and¢>1 for the region  activation barrier for such reaction. However, in an isolated
(iv). system a state witA F>0 may be the global optimizer, i.e.,

It must be emphasized here that the described geometrihe end point of a transformation.
cal analysis of an adiabatic system is completely analogous To elucidate the latter assertion, we shall formulate the
to the common tangent construction in the thermodynamicgeneral criterion of bifurcation of a new stdigther homo-
of binary alloys where the Gibbs free energy of alloys sub-geneous or heterogenegdsom the parent phase. To be-
stitutes entropy of an adiabatic system and mass conservgin with, notice that as the total energy is conserved
tion of one of the components substitutes the energy conser-
vation. Transformation in the regiofiii) is reminiscent of
the solute trapping and in the regidiv) of the massive
transformation in alloys.

AE(T,V)

=g0—
ea(T) € V ’

(17)

o ) _ whereT is the transformed-state temperature. Then, expand-
A. General criterion of bifurcation ing the functions,(e) into the Taylor series and using the

According to the above formulated criterion of the glo- definitions of temperature and specific hék4) we obtain:
bal thermodynamic stabilityl), a new state will “branch

2
off” of the homogeneous parent phasewhen the entropy s,(e)=s,(e%) — A_EO_ L( A_EO)
of the former becomes greater than that of the latter for the “ VT" 2Cy,\VT
same energy of the system. On the Mollier chart a phase AE \3
transition is manifested by the bifurcation of the line of a +0 m) .

Va

new state from the line of the parent one. As the size of the
system becomes smaller its phase diagram becomes Mo, the premise of a small excess internal energy of the trans-

complicated because several different homogeneous and_ he&imation AE as compared to the thermal energy of the par-
erogeneous states may branch off the parent phase at diffely; phase,, TOV, substitution of this relation into the defi-
ent energies. There are many different ways how one cagiion of the excess quantitigd6) yields the expression:
characterize the energy of a system under consideration. It is

generally accepted that the best way to deal with a one- __ AF 1 / AE \?

component thermodynamic system is to set its energy and  S(€%V)—s4(e%)=— VaibTe \VT*)

entropy as functions of temperature and specific volume, if Ve

the latter varies. Below we shall describe the outcome of AE \3

transformations in insulated systems of different sizes in CyoVTe

terms of the initialT® and finalT* temperatures wher& is

the temperature of a homogeneous parent phageor to Here,s,(e°) is the entropy density of the initial state after
transformation. To find the bifurcation parameters, temperathe preparation but before the transformation. For a transfor-
tures of the initialT® and finalT* states, we shall introduce mation into a new state to gs,(e% V) must be greater than
the excess(singula) quantities of energy, entropy, free- s, (e%. This is true forany state withAF<OQ even if
energy as the differences between the actual thermodynamicE=0. An example of such transformation will be encoun-
functions of the system at equilibrium and those that theaered in the next section. However, E@8) shows that there
homogeneous parent phase would have if it occupied themay exist an adiabatic transformation into a state with
entire volume of the system with the temperature equal to th& F>0 which will occuronly if the negative contribution to
actual one and uniform throughdut the entropy due to the free-energy excess is offset by the
positive contribution due to the internal energy excess. At
the bifurcation point é—sg) vanishes. Hence, transforma-

+0 . (18)

E E e tion into a state withAF>0 requires the threshold energy
Al Sh={S} (T.V)-Vx{ s} (T). (16) AE which may be found from the following equation:
F Fl e f), AEZ(T*)=2Cy VT*AF(T*). (19

J. Chem. Phys., Vol. 107, No. 5, 1 August 1997
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Alexander Umantsev: Adiabatic phase transformations 1605

This equation may also be used to determine the bifurcatioequilibrium proportion. Therefore, for exothermic transfor-
temperatureT* of the transformed state withF>0 while  mation one should choose a negative sign in 4).
temperature or energy of the parent phase at the start of the It is advantageous to choose as the standard state of the
transformation is determined by E{L7). Notice that the linear system the parent phaseat the equilibrium tempera-
threshold energy of such bifurcation obeys the constraint ture Tg: (eEzO, sEzO) and reckon energy and entropy

0<AF<|AE|<Cy,TOV. (20 from this state. Then

If more than one state branches off the parent phase ¢ (T)=c(T-Tg); s,(T)=C In l;
then, to assess the regions of their global stabilities, one T
needs to apply the criteriofl) to these states directly be-

cause the criteriof17) and(19) is not applicable. However, s,(e)=C In
there is a way one can determine the global stabilities of two

states, different fromy, and make use of the criteridid7)  Notice that, as a result of such choice of the standard state,
and (19). Indeed, the state that branches off thgophaseat  the free energy of the parent state and its first derivative with
larger energyis more stable around this bifurcation point respect to temperature vanish at the equilibrium point. The
than another state that branches off at smaller energy. Agapproximation of the temperature independent specific heat
parently, at still smaller energies there might appear to bgimplifies our calculations in the vicinity ofg but, appar-
another bifurcation and these states may exchange their stantly, cannot be extended to very low temperatures. For the
bilities. This wraps up the formulation of the general crite- product phase this yields

rion of the global stability of states as represented by the

simple one-component isolated system. Below this criterion _ TN - _

will be applied to different situations. e =CT=Te~Li sg(M=Cln

=
I+t |- (23)

Te T
E E (24)
cinl1 e L L
sﬁ(e)— n +Q+C—TE T—E, Q—C—TE
B. “Linear” thermodynamic system o .
ParametelQ, which is the ratio of the latent heat to the

It may be of interest to look at an example of a thermo-thermal energy densitg Te of the standard state, classifies

dyna.n']ic system with equal and temperature-independenyifrerent transformations as weak, sm@l| or strong, large
specific heats in both phas€s,,=C,;z=C. Such a system

can be calledinear. For the temperature of the parent phase ~ Energy of the equaentropic point aﬁ-(gﬁ T*, of a
at the bifurcation in the linear system, Ed&4), (17) and  pomogeneous bifurcation fromto 8 phase can be found by

(19) yield the direct application of Eq2) to the linear systen23) and
P /ZT*AF(T*) 21 (24). This yields
o €ap=—CTel 1= 5577 |’
Note that at the bifurcation, temperature of the system expQ-1 (25)
changes discontinuously by the jump fréffl to T*. Q Q expQ
As the entire volume of the syste remains un- T =Te——<Tg; TZB=TE—>TE-
changed, the latent heat at an arbitrary temperature can be expQ-1 expQ-1
determined as follow$:*** In the case of a weak transformation, which will be of special
L(T)=e,(T)—ex(T). (22) interest for the discussion belove,z~—L/2, T‘;’YB~TE
. o ) _ —L/2C, T* ,p~Te+L/2C.
Differentiating Eq.(22) W|th respect toT and keeping the The average energy of the linear system may be conve-
volume constant, we obtain the formula for the temperatureyiently expressed through the dimensionless supercodling
dependence of the latent heat as follows:
dL —(aE_ 20V — _ 70
g1~ Cva(T)—Cyp(T) Ad=(e.—e))IL=C(Te—TO)/L. (26)

In alloys the role of supercooling is played by the supersatu-
which shows that the latent heat of the linear system is @ation normalized by the width of the miscibility gap. The
constant. This relation is analogous to the Planck’s formulaemperature of the final stat&* after transformation is
for open system$” Notice that in general the latent heat greater than that of the initial of€?. There may be a special
cannot be determined via entropy differences of phases beeason why this temperature may attain the equilibrium
causes,(T) —sg(T)#L(T)/T at arbitrary temperature. The yalue:T*=T¢. Then the bifurcation criteriofl7) and (19)

latent heat may be either positive: exothermic reaction, ofs greatly simplified and may be expressed in terms of the
negative: endothermic reaction. Although both cases are poghreshold supercooling

sible, in the present study we are concerned mostly with the

former one which entails negative valuesidE for any het- Ao [2AF(TE) 27
erostate wherex and g phases are mixed together in an th QLvV -
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1606 Alexander Umantsev: Adiabatic phase transformations

Application of these ideas to the transformation in theV, alters the equilibrium. Using the definition of the free
thermodynamic limit yields a trivial result that energy, the equilibrium conditions may be expressed as fol-
TO=T*=Tg, and A#,=0 becauseAF=0. Depending lows:
upon the initial temperatur&®, the « phase may either stay
uqtransformed(glc_;bally stable phage decompose into a fa(T)sz(T)Jro(T,V)d—A; o=f,(T,V)=¢,—Ts,.
mixture of coexisting phasesand g, or transfer completely dVg
into another, more stable, phage Decomposition starts (31)

“immediately” after the supercooling of the parent phaseere ¢ is the free energy of the unit area of the interface, the

(A6>0) and goes until the magnitude of supercooling attainsyrface tension, which is assumed to be positive. The area of
unit (A#=1). For the equilibrium transformation fraction of 4 regular(nonfracta) surface obeys a power law as a func-

the heterostate Eq§l3), (22), and(26) yield tion of the encompassed volumé=KpV5 P, whereD is
ee=A6. (2g)  the dimensionality of the space. Then, substitution of Eq.

_ ) _ (31) into Eq. (16) yields for the excess free energy of equi-
For supe_zrcoo_lmgs higher than one parent phase will transsy ium heterogeneous mixture ofr and B phases:
form entirely into the product phage. AF=gA/D>0. Application of the general criterion of bi-
furcation (17) and (19) shows that adiabatic transformation
into such a state always requires the threshold energy per

IIl. INFLUENCE OF INTERNAL INTERFACE: THE unit volume

CAPILLARY APPROXIMATION

In the previous section we have analyzed the equilibrium @ =1 /ZCT*cri. (32)
states of an isolated system in the thermodynamic limit of v DV

infinitely large sizes where influence of a phase-separating |, \what follows only a one-dimension&lD) case will

interface is negligible. Now we intend to assesssi# ef- o considered where the phase-separating interface is a
fect!n isolated systems. We envisage an internal interface 3Slane. So, we postulate that the heterogeneous layer is com-
a thin layer of the ared and thickness, <V/A that sepa- ey confined between the geometrical surface® and

rates two coexisting phases, encompasses rapid variations of y parallel to the interface, whehé=XA. Great simplifi-
different physical properties between phases and is N0 OQsaiign of this problem stems from the independencedof
stacle_to the energy ﬂuxgs. Eor a more elaborate descriptiofy, V,; which results in the equality of the free energy
of an interface one may inquire in Refs. 2 and 4. densities ofx and 8 phases at equilibrium, E431), hence,

. The e.ntropys| att_rlbuted to the unit area of the mterface the temperature of the heterostatdis, Eq.(10). Then con-

is a function of the internal energsf of the same piece of - yiiong (29) and (30) allow us to express the entropy of a
mterfaqe and isndependenbf the energies of phasesand two-phase layer reckoned from taephase aff¢ as a func-

B that it separates. However, both and e, may depend i, of the energy of the system reckoned from the same

upon the total volume of the systewh The interfacial area  gyate and the equilibrium value of the transformation fraction
will be deemed dependent on the volume of the productq 5 function of the supercooling

phaseVg only. All this changes the total entrogy of the
system by the amourg; (e, ,V)A and the total energ by E-oA e

the amoung, (V)A, cf. Egs.(3) and(4), but does not change Slatl+p)= T pefatl+py=A0+ LX"
the total volume because we assume that=0 (N,=0). (33
Then application of the method of Lagrange multipliers to

the condition of equilibrium and stabilit®)—(5) yields These relations show that the interfacial contribution does

not break a linear dependence between the average energy

= ﬁ _ ﬂ _ ﬁ (29) e?=E/XA and entropys =S{a+ |+ B}/XA of a two-phase
de, de; de’ system at equilibrium, but introduces a constant shift in-
a(s+ne) versely proportional to the system siXe[Fig. 1, line 2; cf.
— - 222N line 1 and Eq.(12)]. Comparing Eq(33) with Eq. (28) one
N can see that transformation in a finite-size system yields
dA larger fraction of the low energy phase than that in the ther-
=S, Ne,=sgtNegt (s +)\e,)d—vﬁ. (30 modynamic limit, unless the surface energy vanishes.

To find the supercooling at which this state bifurcates off
Equation (29) shows that the introduction of an interface the parent phase we shall apply the general criterion of
does not change equality of temperatures of the phasesl  bifurcation, as expressed by Eq$7)—(21), to the finite-size
B and allows to introduce the temperature of an interfacelD system. In the capillary approximatiahF=ocA. The
T,=(ds /de) 1, so that temperatures of all parts of the sys-fact that temperature of the heterostdie+ |+ g} is Tg
tem are equilibratedl,=T,=T,. Equation(30) shows that  brings a great simplification to our task because @ can
the size dependence of interfacial entropy and energy alorige used. Thus, for the threshold supercooling and energy at
do not change energies of coexistelﬂaﬁe eg and the equi- the beginning of transformation Eqgél7), (19), and (27)
librium temperaturel . However, the dependence Afon  yield
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Alexander Umantsev: Adiabatic phase transformations 1607

O'CTE eB|=_L_ea|; A95|=1_A0a|; QDB|=1_QDQ|.
ol = 2y§ lc= [z (34) (35)

eaIZ_LAaaI; Ad

This expression concludes the study of the influence of
After the transformation, temperature of thephase returns  an internal interface on phase transformations in isolated
to the equilibrium valueT* =T and there appears a new finjte-size systems and demonstrates that energies of the be-
phaseg at the same temperature. Therefore, the reaction &jinning and end of transformation deviate from the equilib-
bifurcation ~ can  be  expressed as  follows: rjum ones in the thermodynamic limit, thus decreasing the
a(Ty)—{a+1+B}(Te), whereT, =Tg—LAGd,, /C. coexistence region. In Fig. 1 is depicted the equilibrium

This .result shows that the necess_ity tp c.reate an interfac&verage—entropy—versus—average—energy funcB'_Qa, X) of
substantially retards the transformatlo_n in isolated systemspe finite-size system. It is represented by the “homogeneous
Several comments should be made with regard 10 B88.  jeces” of thea and 3 curves for the energies aboeg, and
First, A6, manifests a genuine supercooling of a parentye|qy, eg respectively, and by the “heterogeneous straight
phase due to the finite dimension of the system rather than @ o >» i petween. Notice that in the vicinity of the bifur-

shift of the phase diagram. Seﬁqu’ we have to emphasizgyiona| energiese,, and ey convexity of the curve
that the adiabatic shift scales AS *'< and constitutes a sur- —

- : s(e,X) is violated. This occurs not because the intrinsic
prisingly strong effect as compared to the isothermal : L .
ond"Dwhich scales aX L. This happens because an equi- properties of individual phases change but because combin-

librium in an adiabatic system involves a phase—separatinmg individual phases in a finite-size system may decrease its

: S o . %ntropy after relaxation to equilibrium. The latter is due to
interface which is not a part of equilibrium under isothermal . L )
the creation of a phase-separating interface which, so to

conditions. The isothermal size effect is completely due to
sspeak, arrests more energy than releases entropy (&)s.

the change of the microscopic interaction at the surface a The phase diagram is a network of lines in the control-

compared to the bulk. Theoretically this is manifested in the ;
introduction of the “extrapolation length,” so that in a parameters space of a system that separate domains where

: . ; . . homogeneous stable statgiases exist from the domains
sample with a free surface, i.e., noninteracting with the am- . g :
vi/here these states coexist. In Fig. 2 the phase diagram of a

bience, where extrapolation length diverges, the isotherm(’;}lme_Size system is depicted in the plafverage energy

_fmne size _effect would van!sh complr—_ztely. On the contrary,size where the bifurcation conditior@4) and (35) are rep-
in adiabatic systems the size effect is present although the %
. o ; resented by the curyé* (e) that has two branches. The two-
surface prevents any microscopic interactions between the L .
. . hase{a+ 1+ B} region is separated from the single-phase

system and environment, e.g., the energy flux is absent, so

that the system should draw resources for transformatioﬁjnes’h.byhthe Iow-el? ergyhbrancin on.;ﬁ’ 6':;6’ gj(Si’) ang
from itself. This delays a transformation until higher driving e high-energy branch on the-side, Eq.(34). Line
forces and causes a supercooling. Third, one may notice that

to characterize a finite-size threshold supercooling in an iso-

lated system a new length scdlg comes about which is 1 supercooling A6 0
called the capillary length. For weak transformations the cap- x line 2
illary length may be many times larger than the interatomic
distancd o= o/L. The same length scalk;, determines the B
Gibbs—Thompson effect or an equilibrium-temperature

change due to the curvature of an interface in many- B
dimensional transformations. There are, however, important s
differences between the former and the latter. The presence )
of a curved interface entails the free energy change of the
minority phase, see E@31), and a shift of the equilibrium
temperature, while the flat interface does not alter the equi-
librium temperature of the 1D isolated system, that is
T*=Tg, but the start of transformation is retarded, that is
T, <Te. Itis also of interest to note that a spherical nucleus

~ heterostate
T o+I+f3

in
=

of the minority phase has different internal pressure and, at

most, is in unstable equilibrium with the majority matrix in & — [ — — — — adiabatic

an isothermal system, while a heterogeneous mixture of , | | nanophase Y

these phases separated by a flat interface constitutes a globij,|

optimizer of an adiabatic system. I cluster Zone e
Obviously, much the same way as for the start of trans- ' . : £

. . . . € e e e - > e e
formation, one can obtain analogous expressions for the bi- # Br ap o @

furcational energeg, , SUp_erCOOHr‘ga and fraction at the_ end pg. 2. phase diagram of a finite-size adiabatic system in the plane energy-
of transformation or merging of the heterostate line with thedensity versus size. Hard lines-phase boundaxigge), Eq. (34); X%(e),

line of B-phase Eq. (35); X(e), Eq. (65); e,,, Eq.(62); e,4.
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1608 Alexander Umantsev: Adiabatic phase transformations
corresponds to the finite-size system of the linear dimension |
X and the thermodynamic limit is not shown in Fig. 2.
Equations(34) and (35) also allow another interpreta-
tion: temperatures of adiabatic transitions in opposite direc-
tions do not coincide in systems of finite size, e.g., melting
and freezing temperatures are not equal any more. This
manifests a hysteresis in a transformation behavior of such a
system when “freezing” starts at temperatufe<Tg and
“melting” starts at temperaturd ,,>Tg. For the width of
the hysteresis loop Eq§34) and (35) yield

| 80
CTeX

A. Partial equilibrium in isolated systems

Q‘I’Aa‘ver‘age entr9py s, /C

Tm—Ts _
Te

(36)

Equations(29) and (30) constitute conditions of the full
equilibrium in the system: The former means that tempera- S/
tures of the interface and both phases are equilibrated and the
latter implies that the temperature takes on a particular value
of Tg. However, in a real transformation these two different
processes may have different time scales. Therefore it is of
interest to analyze partially equilibratedsystem when tem- F'_‘t?-la A"erag‘el_e”g‘;pys gf a 'syg;fas atf“t';‘?“l?” of the f;af““g(?;thz
peratures of b.o'th.phases are eqd. (29 is fUIﬁ”eq] but ::::(;i\;s:r@er;?&m?ayer (tﬁer;nodyr:a(ranrfcn Iimll)(;: ns((a)Tifjeslir?e—eglﬂn Ia?(rer,
not to the equilibrium temperatuf&q. (30) or EQ.(8) is not /1 x=0.05 capillary approximation
fulfilled]: T,=Tz=T,#Tg. As the same definitions, Egs.

(14), may be used to determine temperature and specific heat

of a heterogeneous state away from equilibrium, the averagemall bifurcation energg,, is satisfied in finite but not very

entropy of a 1D linear system as a function of average enthin layers. The interfacial energy may change as a result of

ergy (supercooling and transformation fraction may be ex- interacting with the boundaries. And finallg,and 8 phases

pressed as follows: themselves may alter in a confinement which will entail
change of the temperature of their coexistence.

SX(A 0! §0) _

C

o) A9 P (arT+pB) fraction ¢

al

0 Bl 1

In

€
1+Q QD—AH—& ”

IV. SMALL PARTICLES: THE CONTINUUM APPROACH

A. Transition state

(37)
In Fig. 3 the quantitysy/C is depicted as a function of the

transformation fractiorp for an infinitely large systernthard
line) and for a layer of finite thicknesX (dashed curje
Analysis of the functior(37) shows thas,.(A 6,¢)/C attains

a maximum atp= A #, which coincides with Eq(28). The
shape of the curvey(A6,¢)/C is similar to that of the in-
finite system with the difference in the position of the maxi-
mum: It is lower on the amoury, /CX and displaced on the
amounte, /LX in the direction of greater fractions, cf. Eqs.
(33) and (37). Notice that in the domainsQ¢p<¢, and
¢ <¢<1 this function falls below the entropy of the cor-
responding homogeneous phase, thatigs not convex as a

As the system transforms from the initial state to the
final state it passes through a continuous series of intermedi-
ate configurations characterized by different magnitudes of
internal parameters and associated values of thermodynamic
functions. It is assumed that one of these intermediate
configurations—the transition or surface stateis a quasi-
equilibrium, labile (according to Ostwald’s classificatipn
statey which has unique values of these functions. From the
microscopic stand point in the transition state atoms do not
occupy stable positions but are in activated configurations,
that is “half-way” from one stable configuration to an-

function of ¢ because the functional space of a finite-sizeother 8. The excess of the free-energy density of the transi-
system is non-convex. Simply phrased, one can say that ition configurationAf =f —f, is known as the activation

these domains the decomposition will not go because th
system cannot support heterostates witkt £<¢, and
(’DE|<(’D<1'

barrier and should be positive, otherwise the> 8 transfor-
mation is barrierless. A transition-state configuratigncan
be achieved in adiabatic transformation from the initial state

The above described analysis of the finite-size closed® only if energies of these states are equdl=e|+Ae]

systems may fail in case of very thin laydssnall particles
because some of the assumptions made are not valid. F
instance, if the interfacial thickneggsis comparable with the
system sizeX, some space should be allocated for it which
will change the transformation fractiop. Looking at the
expression(34) one can conclude that the assumption of

J. Chem. Phys., Vol. 107,
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Alexander Umantsev: Adiabatic phase transformations 1609

their energies are equal. For this to occur the parent phassnergy e,;~—-L—e,,, Where the transition-state-line

even needs not to be unstable and, in fact, may only beranches off of the homogeneogsphase line, see Figs. 1

slightly supercooled below the equilibrium point. In this and 2.

case, conceivably, there is another state that separates these One should not forget about another possibility in the

two and serves as a barrier for transformation. system that has been studied in the previous section, that is,
The excess free energy density of a system, capable afecomposition into a heterogeneous mixture cofand B

phase transition, contains two different energy scales: thphases. Therefore, the transition state, even if it is stable with

latent heal.=Aeg(Tg), Eq. (22), and the activation barrier respect to both homogeneous phases, may become unstable

B=Af,(Tg) at the equilibrium temperature. On the mesos-with respect to a heterogeneous state. To estimate this pos-

copic level of description these two scales should be considsibility one needs to apply the criteridi7) and (19) to the

ered independent. In the present study we are concerned witteterostate and find the state that branches off of the

exothermic reactions from a higher symmetryphase to a  «a-phase first, as the energy of the latter decreases. To realize

lower symmetryB-phase Where&sgz —L/Tg. Crystalliza- this idea we can employ a simplified capillary approach of

tion may be an example of that. This suggests thaSec. lll. Equating magnitudes of the threshold energigs

AsS~—3L/Te and AeS~B— 3L because, according to the @nd €a,, Eqs.(34) and (40 yields the expression for the

definition, the transition state is “half-way” betweenand  critical thickness

B. Of particular interest for the present discussion is a weak o

first-order transition where<CTg. For thea®— y transi- X“:E' (43

tion in such system to occur, inequalit20) must hold:

B<|Ae'§|<CTE, that is both energy scales are muchThus in plates thinner thaX, made of a material with

smaller than the average thermal energy U<1/8, the parent phase must be replaced by the homoge-
neous transition state if the initial energy density of the sys-
B<L<CTg. (38  tem is in a certain band around the equaentropic point

The bifurcation temperatures of such transformation in €,5~—L/2. In plates thicker tharX. the transformation
. urcatl peratu u lon | aboes in the direction of the decomposition into a heteroge-
linear system may be found from E@.7)

neous mixture otx and B8 phases, see Figs. 1 and 2. Thus in
Ae(T%) small thermally insulated systems the homogeneous transi-
2y (39) tion state becomes the most stable one which means that this
¢ state satisfies the definition of a phase. Such state may be

The activation configuration in the system, where conditiong@lled adiabatic nanophasetvidently, mechanical, electri-
(38) are fulfilled, is less energetic than the initial one would €@l and optical properties of such phase are different from
have been at the same temperature becAwSe<0. Hence those of bulk phases and 8. As it has been pointed out
the temperature of the activated statg, is higher than that above, there may occur another bifurcation at still smaller
of the parent phasé"gy and may be near the equilibrium €Nergies after which a heterostate will gain the global stabil-
value Tg . Accepting the approximatiom’, =Te, Eq. (19) ity.
yields for the bifurcational energy

0 _ 1%
Toy=Teyt

The conditions of the adiabatic phase stabilization as
represented by the critical magnitude of the parameter
€0y~ — J2CT¢B. (400 Ug,=1/8, see Eq(42), and the critical thicknesX,,, Eq.
(43), are the principal results of this work. However, thus far
At energies less thag,, the transition state is more stable they were obtained with the help of an approximation
than thea-phase but may be less stable thanfhghase. To  T* =T, which may not hold in reality.To determine the
assess the stability of the transition state with respect to theonditions of adiabatic nanophase stabilization without un-
B-phase one needs to apply the criteri@i-(5) to the latter.  necessary approximations one needs to apply more elaborate
However, the above formulated criteri¢i7)—(20) allows  approach to this problem, which will be done below with the
one to determine whether thestate is more stable than the help of the continuum method.
B-phase: thex— vy bifurcation must occur at larger energies

(smaller supercoolingghan thea— 8 one, i.e., _
B. Continuum approach

Cay~ Cap- (42) To address the issue of small particles many different

Comparing expressior(@0) and(25) for a weak transforma- theoretical methods can be used. In the present work we shall
tion, we obtain that the conditiof#1) is fulfilled for materi- take advantage of the continuum method which allows one to

als whose properties satisfy the criterion study both equili_bri_umal and dynamical ;ituations on the
same ground. Within the framework of this method a ther-

CTeB 1 modynamic system, in addition to temperatdreand pres-

=7z <§- (42 sure P, is characterized by another internal parameger

which is a measure of disequilibrium in the system. At equi-

Calculations, analogous to those that lead to(Ef), carried  librium the latter takes on a specific value which can be

out for theB-phase, yield the expression for the bifurcationalfound from the proper thermodynamic condition and is a
J. Chem. Phys., Vol. 107, No. 5, 1 August 1997
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1610 Alexander Umantsev: Adiabatic phase transformations

function of the local temperature and pressure:(44)—(46). The properties of these states have been studied
ne=®(T,P). This parameter relates to the degree of a reextensively in Ref. 12 and will be reviewed here briefly. The
action in the theory of chemical reactions and equilibrium states fall into two categories: those which allow
macrokinetic$! to the relaxation parameter in optics and Lagrange multipliers and those which do AbtThe latter
theory of liquids, to the degree of nonrigidity in the cluster states are inhomogeneous both in temperature and transition
theory?? and magnetization in the theory of the magnetoca-parameter distributions. They may be realized in materials
loric effect?® In the theory of phase transitions it is associ- with the vanishing thermal conductivity ortiyand will not

ated with the symmetry change and is usually called ordebe considered any further. The former states have uniform
parameter. However, many transitions may have little to dalistribution of temperatur@= (8S/SE) ~* across the system
with ordering, e.g., magnetic, polymorphic, freezing, spin-and benefit from the introduction of the free energy func-
odal decomposition. In what follows we shall calltiansi-  tional
tion parameter Transition parameter is also a part of consti-

tutive equations of materials, hence, making mechanical, FEJ'
electrical, magnetic, optical, etc. properties dependent on the

transition parameter variations. The concept of the transitiomhese are the same states as those of the isothermal system

parameter helps one to simplify the definition of a phaseand may be represented by solutions of the Euler equation
which has been given in the beginning of the paper: homo-

geneous in the transition parameter and locally stable state of 6f(\T' 7) — kV2p=0, T=const (49)
a thermodynamic system we shall call a phase. on ' '

In the framework of the continuum approach the prOb'As the boundaries of the system in question do not interact

lem of equilibrium and stability in isolated systems should b i, e environmentfree surfack the variational problem
reformulated. If adiabatic conditions are maintained for %ields the Neumann-type boundary conditions

system then its enerdy, which should be written as a func-
tional, is a constant. If the system becomes heterogeneous J,7=0 at the surface. (50)
there is a certain penalty on it which is expressed by the

so-called gradient energy contribution into the functional of
the total energy*?° Then

d3x. (48)

(T )+ (V)2

C. Local stability of equiliubrium states

E= f d3x=const, «>0. (44 _ The free energy density. of a sysFem capable' of undergo-
ing a phase transitiof(T, ) is a continuous function of the

The integrand here represents the energy density of a heterH?_”S'“OT” pta;]rim_etetg HomQ%%neguos solutions gf t&ﬂj[)h
geneous system. There are no conservation constraints on tffe_ ’_75( ), d at1s ofs?h W} =% c%rreiﬁpon 0 the
transition parameter because the latter is assumed to be nlcf—ax'ma and minima of the free energy dendifl, ) as a

conserved. However, the total volume, unlike the transitio unc_r_lon ggthe transm%? parafmer:er. N ¢ i f th
parameter, is conserved 0 address a problem of phase transformations of the

first order we must assume th&(T,») has at least two
minima associated with the and 8 phase$’ At the equilib-
rium temperature, transition parameter takes on the values
7, and 774 in the @ and 8 phases, respectively, and the free
energy densities of these states are efise Eq.(10) and
curve 2 in Fig. 4. Since two minima of a continuous func-
tion must be separated by a maximum, it follows that the
SEJ s(e, 7)d*x— maximum. (46)  transition statey corresponds to the free energy maximum

(saddle in a multidimentional casethose position between
Here the entropy functioné is assumed not to contain the the bulk phases may vary with temperature

gradient term. The entrogs(e, ) and energe(7) densities

of a homogeneous system can be found if the free energy of % —_ For(T,7,) (51)

a unit volume of a material is known as a function of tem- dT fon(Tim,)

perature and transition paramet&(T, 7). For this one needs To ensure local stability under isothermal conditions
to use the equilibrium Legendre transform with respect to(Open system the isothermal “stiffness” of the equilibrium
temperature because the transition parameter is not involved, ;o should be positive:,,,(T,7¢)>0. This is true fora

e(7)+ 5(V)?

VEJ d®x=const. (45)

According to the principle(1) the entropy functional
takes on a maximum value at the stable equilibrium state

in it and g phasesf, (T, 7, >0. The isothermal stiffness of
af(T,n) the transition state is negativé;,(T,7,) <0, Fig. 4. This
s(e,m)=——-7—1 f(T.m=eln-Tsen. (47)  means that this state does not correspond to any metastable

bulk phase of an open system. However, constraint of isola-
Thus in the framework of a continuum theory equilib- tion changes the condition of local stability of this staté$
rium states of an isolated system obey the conditions of thand isothermally unstable state= 7z will be thermody-
isoperimetric problem in the calculus of variations, Egs.namically stable if the adiabatic stiffness of this state is posi-
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Alexander Umantsev: Adiabatic phase transformations 1611

whereAf(T, n) is the excess free energy density of the sys-
tem. As a consequence of the no-flux boundary conditions
(50), the integration constar® vanishes in the thermody-
namic limit but is not zero in a finite size system and has a
meaning of the excess free energy density on the surface

\

. / Adiabatic nanophase

G=Af(T,n)=Af(T,n,). (55

Transition parameter values on the surface of a heteroge-
neous layer of finite thickness;; and »,, differ from bulk
o values, n, and 75, and generate the surfacial ordering
B (71— n,) and disordering §5— 7,), respectively.
General solution of Eq(54) may be represented in the
form of Elliptic integral and is a vast subject in its own right:
1 it is either monotonic—-nterface or periodic—domains and
interfaces. The latter are not considered in the present study
% because they may be locally stable at most. Qualitative prop-
erties of the monotonic equilibrium heterostdtaterface

A : can be derived from the analysis of the bifurcational map
n, transition parameter

free energy density

8
72 dzy

K
FIG. 4. Free energy density of the system w@k=0.1 andS =0.009 as a X= \/:f = — (56)
2 )9 JAf(9,T)-G

function of the transition parameter at different temperatuf®sT<Tg;
(2 T=Tg; Q) T>Te.
Also Eq.(54) and boundary conditiof65) help find the ex-
pressions for the surface energy and thickness of the inter-
tive: f,m—(f,,T)Z/fTTBO. Hence, an isothermally unstable face. Adopting the definitions of these quantities introduced
transition statey will be adiabatically stable if the modulus in Ref. 25, we obtain
M takes on a value greater than one

f%]T(Tr 77'}/)
f 7]7](T! 777) fTT(Tl 7]y)

It is of interest to calculate the specific heat of the tran- ~ There is an apparent analogy between equilibrium prob-
sition state. Substituting E¢51) into the definition(14) and  lem, as represented by Eq&4) and (55), and mechanical
taking into account thaC=(Je/dT), we arrive at the ex- Pproblem of oscillations of a point mass with the speed
pression for the specific heat of the transition state dp/dx in the potential fieldlI(7)=—Af(T,»), wheren,

corresponds to the bottom of the potential well. Equation
_de(n,) E) N
T/

C. = - f) _d777:c(1_M)_ (53) (54) manifests conservation of the mechanical energy,
roodT dm); dT and 7, have the meaning of the turning points, the thickness
This expression shows that when the transition state gain%f the layerX is analogous to the period of mechanical os-
adiabatic stability, its specific heat becomes negative whicﬁglﬁgggsér:gzgac';l tzlglgg’s&;;g;h; :Ir:gesyclgtr; Sr;ar):\:insd\ly;ﬁ
means that such a state would be unstable in the bulk. Witrﬁ a . - . :
regard to the entropy-versus-energy function of the tranSitiO6r?a(1)r\:vﬂé1rtr?1irr1eiclr:r?gsss$1§ ;S\?Jgiﬁt':;zlI'na;l:)?i?u;ftem faster

states,(e), it is necessary to stress out that its plot ceases t

be convex upward as soon as the state becomes stable, see In & very thin layer the surfacidtlisjordering becomes
Eq. (14) and Fig. 1 " 'very strong and the transition parameter distribution ap-

proaches the homogeneous magnitude of the transition state
N o parametery, . Equation(43) gives an approximate value of
D. Global stability of equiliubrium states the critical thicknesX, such that in thinner plates the ho-

Besides homogeneous solutions that correspond to tHE09eneous transition state is the most stable (ad@batic
bulk phasesy, 8 and the transition state Eq.(49) is known nanop_has)e The exe_lct criterion of the global stab_|I|ty of the
to have bounded heterogeneous equilibrium solutions thdfansition state against a heterostate may be derived from the
correspond to the transition regions where transition paramnalysis of the bifurcational ma(56). The mechanical anal-
eter varies rapidly from the value on one side to the value o®9Y Suggests that in a small vicinity of the transition state a

the other side. In a 1D system E@9) may be integrated heterogeneous solution of E¢4) may be expressed as a
once to yield small harmonic modulatioAs of the amplitudeH on the top

of a homogeneous transition stagg.Then the criterion of
bifurcation of such a solution from the homogeneous one
may be found from Eq(56) as

72— "M

mad vy~ 7

X
U(T,X)EL k(Vp)2dx; 1(T,X)=

M= >1. (52

x(dn)\? CAfe
slgx] “ATm—G Af=f(T,)—f,(T), (59
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1612 Alexander Umantsev: Adiabatic phase transformations

< W[H d(67) whereE_ThB/L is 'Fhe ratio of two b?;i(;;carl]es of the free
= energy. The transition parameterseofand 8 phases remain
lf’?’?(T’%H “HVH®=(67) unchanged with temperature for this potentigl;=0 and

P ng=1, and the location of the transition state depends upon

=7\ — (58)  the normalized temperaturey,= 3h(T). This potential, see
|f’7’7(T’ 777)| Fig. 4, has been adopted from Refs. 12 and 28 where all its

properties may be found.
E. Adiabatic nanophase stability To apply the free energip9) to the problem of adiabatic

To advance in the analysis of the adiabatic nanophasBhase stability, as expressed by the bifurcation C”t?’(@'
e . . . and(19), one has to calculate the excess fiefg, and inter-
stability it is desirable to have a comprehensive picture of the . " : .
. ! S : : hal Ae, energies of the transition state as functions of its
free energy which reflects microscopic interactions in the Y . :
) temperature and substitute these into Bd). The free en-
system and may be employed for the continuum approach;, : - 3 ~
. ! ergy (59 vyields Af,=1/3Bh*(4—h) and Ae,=
Then Eqgs.(17)—(20) and (58) will help us refine the rough —1/4Lh2[3—h—42(2—ﬁ)2] and Eq.(19) takes the fgrm'
estimates of the adiabatic nanophase-stability limits, made in a '
the beginning of this Section, based on the assumption of the 9 [3—h* —3(2—h* )?]2
e . s . _ T Rh* ay ay
equilibrium temperature of the transition state. An important U= 32h‘“/(4—h* [3-43(1-h* )]
question should be asked: How one can determine param- ay ay
eters of the free energy? One way to solve this problenThe solution of this equation enables us to find the bifurca-
(macroscopig is to obtain expressions for various measur-tion temperature T and energy
ables and compare them with the experimental observatiortgay: C(T%,—Te)+Ae,(h%) alznd represent the bifurca-
of kinetics and equilibria in two-phase systems. Another waytjonal criteryion(41) as f0||0\7v3:
(microscopi¢ consists in deriving parameters of the mesos-
copic free energy from an appropriate microscopic theory, 3 1—%(hfw)z[S—hzy—E(Z—hzy)Z]
e.g., transition state theory, where the isothermal stiffnesses U<3—2 1-h* . (62)
f,,(Te.n4,p) relate to the frequencies of intrawell vibration «v
while |, (Te,7,)| relates to the interwell motion. Impor- Equation(60) has a solution between the congruent points
tantly to realize that the free energy might not necessarily bé, =0 andh,=2 only if U<0.12. For small values df this
symmetric with respect to thg, and 5z phases even at the solution takes the form
equilibrium temperature. Such asymmetry manifests in the

difference between the isothermal stiffnesses of the equilib- « 128 16 ( 128

(60)

. ) ; ) ~—U; e,=
rium states as well as in the different distances from the @y 27 @y 3

transition-state parameter.(Tg) to that of the equilibrium L .
P o,(Te) d Then the criterion(61) alows us to conclude that the adia-

statesa and 8. A strong indication of the asymmetry of the bati h : ible f terials with t
free energy of the melting-freezing transition is a possibilityssc'ﬁ t?]z?_Op ase IS possible for materials with parameters

to supercool liquids for up to 100 degrees and virtual impos-
sibility to superheat solids at all. This may embody a prob- 3
lem for the modeling of the free energy potentials by the USUUE3—2~O.0938. (63
polynomials of low order because the polynomial of the

fourth order, which is the lowest order polynomial to exhibit To determine the temperature of thHecal stability
the “double-well” shape, has equal second derivatives inboundaryT, of the transition state, as expressed by the in-
both minima. Thus polynomials may be used for modelingequality (52), one needs to calculate the modulMs and

Ull-—4-U

a1V (62

the first order transitions close to the second order and argquate it to one: M=(9/64U)h (2—h,)
not appropriate functions for modeling the strongly first or- x[1—(16/3)%(1—h,)]=1. Solving this equation one can
der transitions like melting-freezing. find the normalized temperature and energy of the local sta-

Many robust characteristic features of transformationspility boundary
can be drawn from properties of the transition state only.
Therefore, we shall not deepen into the study of analytical h %3_2
functions appropriate for the purposes of the phase transition % 9

modeling and we shall not consider effects associated with . )
the difference of isothermal stiffnesses @fand @ phases. comparing Eqs(62) and(64) one finds that the temperature

Instead, for the excess free ener§y§ we will use the ex- of the local stability boundary is less than that of the global
pressioﬁ stability and both are less than the equilibrium temperature,

ie., TysTjW<TE. However, the energy of the local stabil-
ity boundary is greater than that of the global stability be-
cause the specific heat of the transition state is negpdae

A ToT Egs. (52 and (53) and Insert in Fig 1 Hence, the energy
h(T)=1+3— E (590  band of the global stability of the transition state is narrower
2 Te than that of the local stability, with the transition state being

U 16LU 1 16U 64
; ey~—§ “9V (64)

B 2 2 2
Af(T,n)=7n h—g(h+2)7/+77 ,
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Alexander Umantsev: Adiabatic phase transformations 1613

more stable than both homogeneous phasesd 5 in the  (equaentropic poiitand the heightX,, which is inversely

energy banee,;<e<e,,, wheree,;~—-L—¢e,,. proportional to the square root & Figs. 1 and 2.
However, as we discussed above, after transformation

the layer may turn heterogeneous if its thickness is greatey. COMPARISON WITH OTHER STUDIES

thanX, Eq.(58). The free energy59) allows one to calculate

the value of the bifurcational thickness and relate it implic-

ity to the initial energy density e°=e,/(h)

=C(T—Tg)+Ae,(h)

Umantsev and OlsSf carried out the numerical simula-
tion of transformation dynamics in layers of materials with
different parameterbl, thicknesse¥, and initial supercool-
ings A6. The authors found that in the thin layer of the

_ Xer W\/; thickness 1.128, (line 3 in Fig. 2 the transition state ap-
X= ——; o o (65 peared and did not decompose for supercoolings
h(o— 4 VB
h(2—h) 0.25< A #<0.285, although in a large system ¥& 100X,

To reveal the inherent nature of the critical thicknesswith the same parameters the ultimate equilibrium had been
(65 we need to analyze the properties of the phaseattained on the heterogeneous mixtureaofind 8 phases.
separating interface with the surface energy and thickness &®or larger values oA § the equilibrium distribution of the
the most important ones. The free enef§9) allows us to  transition parameter in a thin layer appeared to be modulated
determine the surface energy and thickness of the interfadgy a harmonic wave of a small amplitude. This type of the
betweena and 8 phases, Eqs57), in the thermodynamic dynamic behavior supports the inference that the transition

limit state may be the most stable one when in confinement. In
Ref. 29 the authors analyzed thieear dynamic stabilityof
2 1 K _pe . . .
o.=—\2xkB. |.== (66) homogeneous equilibrium states in 3D systems of arbitrary
“ 3 ¥ 4 N2B

shape. The analysis revealed that such a state is linearly

Comparing the formulad65) and (66) one can see that stable if the following two conditions are simultaneously sat-
isfied:

Xg=y2m7l,, i.e., the critical thickness is approximately
equal five times the interfacial thickness. The bifurcational fw—(fnT)Z/fTTzo for |k|=0
size X, below which the adiabatic nanophase appears on the
phase diagram, depends upon the initial enesjy(super- )
cooling A#) and may exceetl, up to 20 times(Fig. 2). In font kk=0 for [k|#0, (68)
Sec. Il we found that the heterostate zone on the phasgherek is the wave vector of the permitted perturbations. In
diagram €,X) is separated from the single phase zores the thermodynamic limit of an infinite system all perturba-
and 8 by two branches of the curv&*(e), Eqgs.(34) and tions, including long range ones witk| —0", are permis-
(39 and Fig. 2. Merging ofX* (e) and X(e) creates two  sible. This yields the criterioffi,,,=0 which is fulfilled for
“triple points:” Tr, and Ti. Although behavior of the statesw,$ and is not fulfilled for the transition state How-
phase boundary in the vicinity of these points is not knownever, this is not so in a confinement where the permitted
to the author at present, he believes that, in f4¢t(e) and  wavevectors of heterogeneous modes constitute a discrete
X(e) represent one smooth curve that separates one-phaset with the limited from below absolute val{ld. Likewise,
and two-phase zones on the phase diagram. Also Bds.  confinement of traveling waves entails standing waves with
(38), (63), and(66) prove that the adiabatic nanophase exis-quantized frequencies. The quantization of permitted
tence imposes the restriction on the hierarchy of lengttwavevectors stabilizes the transition stateln a 1D layer
scales in the system with the boundary condition€0) min|k|= #/X and the cri-

|| om] 67) terion of linear stability(68) for the transition state takes the

ATICT e form that coincides completely with Eq$52) and (58)

Expressions olJ,, Eg. (63), and the critical thickness which have been derived from the thermodynamical prin-
Xers EQ. (65), derived with the help of the mesoscopic free ciple of the global stability(1). Combination of thermody-
energy(59), refine the values of these parameters, @Q) namic and dynamic stability analyses compels us to believe
and (43), estimated on the premise of the equilibrium tem-that the globally stable transition state is a truly equilibrium
perature of they state after transition and demonstrate thatphase and not an artifact. It comes about as a result of two
the latter assumption is reasonable. E89), for instance, mutually assisting factors: adiabatic insulation and confine-
reveals the nature of the— y transition as a weakly first ment, and inequalitie$68) are the conditions for the exis-
order because there is a small jump between temperatures t&hce of the adiabatic nanophase.
the phases, that is inverse derivatives of entropy with respect Molecular dynamics have been extensively used for the
to energy. At the same time, the continuum method allowsanalysis of structural evolution afusters(small particlesat
one to arrange the bifurcational energies on the phase digonstant energy. When molecular dynamics is used to ana-
gram of a system with smalU in the ascending order: lyze the behavior of materials, one has to be careful while
e5<eyﬁ< €ap< ea7<e7<e§, and to identify the region of interpreting computer experiments because they are usually
stability of the adiabatic nanophase on the phase diagramione under systems of finite size and constant energy. Rose
(e,X) as the box of the widthL[1—(U/U.)+(4/27) and Berry° studied melting and freezing of small salt clus-
X(U/Uy)?] around the center of the two-phase zoneters(K-Cl). They found that in a certain energy band, except

and
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1614 Alexander Umantsev: Adiabatic phase transformations

solid-like and liquid-like, other states that correspond to thdidify in the free flight. They found that under extreme con-
saddle points of the potential energy surface are possible. Iditions of high cooling rates and very small liquid volumes
some experiments the “equilibrium” has been achieved onsome pure metals solidified from the melt as an amorphous
“fluctuating states.” Similar results were observed earlier byphase. Also they found that the critical size increased with
Sugano and Savada in the six-particle transition-metaflecreasing melting temperature of each bcc metal except iron
clusters® and that the glass transition temperature increased with the
Suzuki and TakahasHi studied the nucleation mecha- latent heat of fusion. The combination of high cooling rates
nism for the martensitic transformation in the crystal com-and small volumes of particles as necessary conditions for
posed of particles interacting with 12-6 and 8-4 Lenard-amorphization conjectures that the amorphous phase may be
Jones potentials. They observed that the bcc lattice alwayigentified with the adiabatic nanophase considered in the
transformed through a martensitic transformation into one opresent paper. A possibility for a material to have adiabatic
the mechanically stable, fcc or hep, structures when in larg@hase is determined by the magnitude of the paramigter
volumes or even in small volumes but with the 12-6 poten-Egs.(42) and(63). This may explain why some pure metals
tial. However, the 8-4 type lattice did not exhibit a marten-do exhibit amorphous states and some don’t. The maximum
sitic transformation and remained bcc when confined to demperature of the parent phadiguid) when the transfor-
small volume of the order of nanometers. This stabilizationmation into adiabatic phase becomes possiijlg, Eq. (39),
mechanism, related to confining geometries, remained unexnay be associated with the glass transition temperature. The
plained in the paper and may be understood on the basis &tipport for the adiabatic theory of amorphization also comes
the present treatment. Mechanical instability of the bce latfrom the fact that the glass transition temperature increases
tice occurs because th€(;—C,,) elastic stiffness of this together with the latent hedt.More details on the adiabatic
structure is negative for both types of potentiftd®> As  theory of amorphization will be presented elsewhere.
strain is the transition parameter for martensitic transforma-  Experimental estimates of the critical siXg,, Eq.(43),
tions, the elastic stiffness fs,,, and the bcc structure may be may be used for the determination of the activation barrier of
interpreted as the transition state between two stable config@ransition if the surface energy is known from independent
rations. In addition, mechanical calculations of Ref. 33 showneasurements. For the solid-liquid transition in simple met-
that the absolute value of the 12-6 type elastic stifiness i@ls, X ranges from few to tens of nanometé?s? Taking
approximately seven times greater than that of the 8-4 latticel00 ergs/cr as a typical value of the solid-liquid surface
Although not stated explicitly, the numerical experimentstension, we estimate the activation barrigras 14 J/n?.
were conducted apparently under adiabatic conditionsYnfortunately, independent estimates or direct measurements
Therefore, the homogeneous stability of the lattice instead o®f this quantity are not known to the author although it is
the isothermal stiffnes$,, is determined by the adiabatic important for the nucleation theory. _
onef,,,]—(f,ﬁ)zlfTT which is more positive than the former. Above described results of numerical and physical ex-
Notice that the second term here is proportional to the therPeriments suggest that the constraint of energy conservation
mal expansion coefficient squar&dOf course, lattice stabil- Stabilizes saddle-point configurations and provide a reason-
ity can be infringed not only by homogeneous distortions bu@ble proof for the adiabatic nanophase appearance after
by heterogeneous ones also. All this has led us to the secorf@nsformations. It may be advantageous to try in the future
condition of stability in confined geometries: to conduct experiments under conditions of adiabatic insula-
f,,+ k(m/X)?=0. Apparently, both conditions are satisfied tion instead of isothermal ones.
for small particles of the 8-4 type lattice, despite its isother-
ma] mechanlcal instability, but the second condition is n_OtVI. DISCUSSION
satisfied even for the smallest sizes of the 12-6 type lattice
because the isothermal stiffnekg, of this lattice is “very In this work a one-component system capable of under-
negative.” going a first-order phase transition was analyzed under con-
Cheyssac, Kofman and Garrigo®ptically investigated ditions of thermal insulation. The functional space even of
solid—liquid phase transition in lead aggregates of very smalthe simplest possible system without spinodal or critical
sizes(from 23 to 300 A and found a huge hysteresis in the points and with only two bulk phases; and 8, contains
reflectance-versus-temperature curve which meant that thedifferent states which may be at least locally stable at appro-
was a wide gap between temperatures of melting and freepriate energies. Among most important ones for the present
ing of aggregates. The isothermal size effect may accourdiscussion should be named the heterogeneous state where
only for the melting temperature decrease while strong sue andg phases are physically separated by the interface and
percooling of the liquid phase below the melting temperatureghe homogeneous transition statevhich separates from
should be explained by the adiabatic effes#te Eq(34), the B in the functional space. Transformation fractignis the
subsequent discussion and E86)]. Appearance of the adia- most convenient quantitative characteristic of a heterostate,
batic nanophase may be responsible for the disappearancewhile the transition parametej characterizes the homoge-
the hysteresis for the lower sizes. neous state. To determine the most stable state we used the
Kim, Lin and Kelly*® studied solidification of submicron Clausius-Gibbs criterior{(1) of the global stability which
droplets, 10-60 nm, of high purity elemental metals by elecimay be expressed in the form of the general criterion of
trohydrodynamic atomization in vacuum when droplets so-bifurcation of various states. The main hardness of the global
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Alexander Umantsev: Adiabatic phase transformations 1615

stability analysis stems from the fact that the states to bé¢hat the free energy of this state is greater on the amount
compared do not occupy neighboring volumes in the phaseAF =c¢A than that of homogeneous phasesor 8 at the
space of the system.The global stability criterion takes thesame temperature. On the Mollier chdRig. 1) the het-
form of Egs.(17) and(19) if the excess quantities of the state erostate of a finite-size system is represented by the straight
satisfy inequality(20). Unlike an open(isothermal system line 2 which lies below that of the infinite system. An im-
where the global optimizer in the thermodynamic limit is a portant finding of this study is the revelation of a strong size
completely structureleséhomogeneoysstate, in a closed dependenceX %2 of the adiabatic phase diagram which
(adiabatig system the global optimizer may have a structurejs not the case in the isothermal system where the size-effect
that is may be a heterogeneous mixture of coexisting phasés due to the surfacial interactions exclusively.
a and B3, if the average energy of the system belongs to a However, the most striking feature of an adiabatic sys-
certain bandeg< e<e§. Importantly that in adiabatic sys- tem is the stabilization of the transition state in very small
tem the global stability may be achieved on the state thaparticles of materials wittd <U . The beauty of this result
does not have minimum free energy at that temperature. Ins the fact that the transition state possessesimum free
deed, the surface energsA of a heterostate is the free en- energyamong all other homogeneous states of the system at
ergy surplus which would have been absent in a homogethe same temperature. This result suggests that all transitions
neousa or B phase at the equilibrium temperature. Noticemay be classified with respect to the value of the parameter
that the latter possesses a certain degree of “stability” in theJ. The transition state is locally stable in the energy band
sense that, in the energy band of phase coexistence, tempevehere the adiabatic “stiffness” is positive and thestate
ture of a system tends to the equilibrium value regardless dfne in this domain is convex downward, see E8R) and in
its initial magnitude. In Fig. 1 entropies of different locally Fig. 1. The global stability of this state spreads over slightly
stable equilibrium states of an adiabatic system are depictesarrower energy banceg, ,e,,), Egs.(62) and(64), where
as functions of their energies. The lines of bulk phasesd the end points are the intersections of thatate line with
B intersect at the equaentropic po&); . It is advantageous the 8 and « bulk-phase-lines respectivelfig. 1). The gen-
for a system to create an internal interface separating tweral criterion of stability(17)—(20), demonstrates that the
stable phaseg and B in the energy bane5< e< eE which  a— v transition is weakily first-order because there is a small
includes the equaentropic point. The straight line 1 in Fig. 1jump of the derivative of entropy with respect to energy, that
which is tangential to both single phase curves, represents inverse temparature. The thermodynamic stability analysis
the a+ B heterostate, Eq12). The points of tangenogﬁa and demonstrate that there exists the critical thicknggssuch
eg and the equaentropic poi,; break the energy axes that in layers of thickness less than the critidak X, cre-
down into four different regions where the parent phase eiation of a phase-separating interface is not favorable and the
ther transforms completely into phagge< eﬁ, “massive”  transition state becomes the global optimizer—adiabatic
transformation, or (eﬁ<e<e ) decomposes into a two- nanophase. Linear dynamic stability analysis confirms the
phase heterostate aof and 8 phases with fixed energiesE  inference of the absolute stability of such a phase in layers of
and eB, respectively, and the relative proportions given bythicknessX<X,,. This makes the activated configuration
the lever rule(13). For the average energy density aboveglobally stable in this energy band not only with respect to
et the transformation does not go at all and the system staythe bulk phases but with respect to the heterostate also.
in the parent phase. In the energy bmgek e<e,z the trans- The bifurcational scenario is different in systems of dif-
formation path passes through the metastable homogeneotgsent sizes and actually may be very peculiar. As energy
stateS of the temperature above equilibriumal, and the sys-density of a particle with the linear size that corresponds to
tem may be trapped therbeat-trapping The real scenario the dashed line 3 in Fig. 2 decreases belgyy, the parent
of transformation depends upon thermodynamic and kinetighase transforms into the adiabatic phase. Further reduction
parameters of the systethFor instance, if parametdy is  of energy leads to the appearance of heterogeneity in the
small enoughlU<1, the a— 3 transformation takes a path system which will be replaced by the adiabatic phase again if
of continuous modulations wich is directly analogous to theenergy is decreased even further. In this window of instabil-
spinodal decomposition when the system generates many iity a heterogeneous structure of a particle consists of regions
terfaces at the beginning and slowly eliminates them latepccupied bya-like and -like phases with relative propor-
(coarsening On the other hand, iU is large enough, tion dependent on the energy of the particle. The last bifur-
U>1, the transformation follows a traditional path of nucle- cation occurs az, when the adiabatic phase transforms into
ation and growth with the hybrid mode possible for moderatehe homogeneoug-phase.The bifurcational si2¢ depends
Uu=1. slightly upon energy of the system and may span from few to
The transformation in a closed system of finite size doe<0 interfacial widthd Eq. (65) and Fig. 4. Stabilization of
not start immediately after supercooling af phase below the transition state comes about as a result of two mutually
the equilibrium temperature but is deferred until greaterassisting constraints: insulation and confinement. In small
magnitudes of supercoolings. The main reason of existenceD spheroidal or cuboidal particles this effect is enhanced by
of the threshold energg,, is the necessity to accommodate the dimensionality of the system as compared to the 1D lay-
an interface which possesses the interfacial energy. In thers considered in the present study. It is completely equilib-
energy bandeg (X)<e<e,(X), Egs.(34) and (35, tem-  riumal effect which has nothing to do with kinetics in con-
perature of the heterostate equals equilibriumal which mearfinement. Notice that, while heat transfer outside of the
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