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Adiabatic phase transformations in confinement
Alexander Umantsev
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208

~Received 11 October 1996; accepted 25 April 1997!

The phase diagram of small one-component particles has been analyzed under conditions of thermal
insulation, i.e., conservation of energy. In large isolated systems the absolute stability belongs to
heterogeneous states with phase separation. However, for small particles the global stability analysis
shows a considerable extension of the single-phase regions into a two-phase zone of the phase
diagram. Moreover, for very fine particles with sizes only 5-20 times exceeding interfacial
thickness, phase separation does not occur at all and the equilibrium is achieved on homogeneous
transition states that canneverbe obtained in bulk samples because of their absolute instability. The
thermodynamic and dynamical explanations are presented. This type of a small-particle phase
diagram may be relevant to the theory of amorphization, magnetocaloric effect, and nanophase
composite materials where small particles or thin whiskers, capable of undergoing a transition, are
immersed into a poorly conducting matrix. In case of small particles of solid solution, where mass
conservation replaces the conservation of energy, present results predict the appearance of new
stable phases with compositions deeply inside the miscibility gap. ©1997 American Institute of
Physics.@S0021-9606~97!51129-9#

I. INTRODUCTION

It has been known for many years that it is possible to
produce small metal particles that have structures unparallel
to the ones encountered in the bulk. Ultrasmall geometries
can force a system to act in ways significantly different to
how it behaves without geometrical constraints. Some recent
observations even suggest that small particles fluctuate be-
tween different~maybe heterogeneous! states, rather than
‘‘sit in a fixed position.’’ The unique character of small sys-
tems not only provides ways to make new materials but also
allows further investigation of the secrets of phase transi-
tions. Until now equilibrium and dynamical properties of
systems in confined geometries have been studied mainly in
isothermal conditions. However, real transformations rarely
occur under conditions of constant temperature because the
mechanism of temperature equilibration, that is thermal con-
ductivity, cannot be infinitely fast. It is the intention of the
author to analyze the behavior of such systems under the
conditions of thermal insulation. This may be the case for
composite materials where nanoscale particles or whiskers
are immersed in a poorly conducting matrix which makes
them effectively insulated, in porous media, or for submicron
metal droplets that have been sprayed in high vacuum by
some kind of atomization technique. Before dwelling on con-
fining geometries it is advantageous to analyze the basic
ideas of transformations in large thermally insulated systems
which will be conducive to understanding the peculiarities in
small particles.

The basic idea of equilibrium in insulated systems has
been formulated by Clausius ‘‘in the following simple form:
1. The energy of the universe is a constant. 2. The entropy of
the universe tends toward a maximum.’’1 Later Gibbs devel-
oped this idea into an elaborate theory of heterogeneous
substances.2 However, some points are missing in his theory
because Gibbs and followers, e.g.,3–7were mainly concerned

with the chemical equilibrium of different species as op-
posed to thermal equilibrium of a one-component system.
Whatever the reason is, thus far very little can be found in
the literature related to transformations in closed systems.8–11

It is the intention of the author partially to cover this gap.
Consider a sample of a high-temperature phase~e.g., wa-

ter! being cooled down below the melting temperature. So
prepared phase is said to be supercooled. A slight fluctuation
may initiate a precipitous transition into a low-temperature
phase~e.g., ice!. However, the course and outcome of such a
transition will be different depending upon the type of inter-
actions of the system with the environment. In the system
that has been isolated from ambient objects after preparation,
the transition is driven by the possibility to increase the total
entropy which emerges if energy of the system after prepa-
ration is below the equilibrium energy of the high-
temperature phase. This energy difference may also be ex-
pressed by the deviation of the initial temperature from its
equilibrium value, that is the supercooling.

In the next section large isolated systems are considered
where the finite size effects are negligible. Although many of
these results may be found in Refs. 3–7, we find it appropri-
ate to lay them out here in a form pertinent to the present
discussion. Recently12 the author analyzed the thermody-
namic stability of equilibrium states under conditions of ther-
mal insulation at constant pressure and showed that in the
thermodynamic limit, besides homogeneous phases, phas-
eseparating interfaces may also be locally stable~meta-
stable!, i.e., with respect to small perturbations. However, a
local analysis is hardly enough, particularly in systems where
several different states may be stable under the same condi-
tions. In order to construct the phase diagram one needs to
complete the local stability analysis with the global stability
analysis, i.e., with respect to all possible variations. In Sec. II
the global analysis of stability of states in an isolated system
at constant volume is represented in the form of the general
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condition of bifurcation of locally stable states.
A special remark should be made regarding the term

isolated systemwhich will be used extensively in our subse-
quent discussion. According to the first law of thermodynam-
ics the change in the internal energy of a body is a conse-
quence of both heat given to the body and work done on it.
In the present study, isolation means that energy of the sys-
tem is conserved, hence, this implies invariable volume of a
system~no external fields! and thermal insulation from the
surrounding bodies~no heat fluxes!.1,2 To specify the inter-
actions of the system with environment, the constraint of
constant volume is chosen which makes the present study
relevant to transformations in condensed matter~solids and
liquids! as opposed to gaseous media where the constraint of
constant pressure is more applicable. In fact, of a particular
interest for us will be an incompressible motionless medium
where work vanishes even for each element of the system.
However, internal heat fluxes are permissible during the
course of transformation which makes it non-equilibrium and
non-adiabatic. A completely adiabatic transformation can be
realized in the special material with vanishing thermal con-
ductivity inside~ideal insulator!. A transformation will also
be adiabatic if it is carried out so fast that different parts of
the system have no time for thermal equilibration.13,14 Yet,
the state of the system after completion of transformation
~thermodynamic equilibrium! will be of our concern in the
present study. Another remark should be made with regard to
the denotations used in the paper: when subscripts and su-
perscripts are used together with thermodynamic functions,
the former will refer to the state of the system and the latter
to its temperature.

Much progress has been recently made in studying size
effects in open systems. These effects can be separated into
two different groups: those which are due to the presence of
the surface restraining the body,15–18 and those which are
due to the existence of precursors to the transition in the
form of heterophase fluctuations.19,20 Usually the former ef-
fects can be assessed by the introduction of the ‘‘extrapola-
tion length’’ and vanish at a free surface where the extrapo-
lation length diverges. The latter effects are manifested in the
emerging of a narrow region of phase coexistence around the
equilibrium temperature and may be addressed by introduc-
ing a ‘‘scaling ansatz’’ which specifies the singular part of
thermodynamic functions. In the case of the first-order trans-
formations both types of effects yield an equilibrium-
temperature shift inversely proportional to the system’s size.
The present study concentrates on first-order phase transfor-
mations in closed systems where phase coexistence is rather
a norm than a fluctuation as in open ones. Therefore, of
particular interest is the influence of an internal interface
separating two coexisting phases. For the outer boundaries
we shall assume the free surface conditions. In Sec. III the
influence of the interfacial energy of a region that separates
the phases on the phase diagram is considered in the capil-
lary approximation which sheds light on the problem of re-
construction of heterogeneous systems in insulation and con-
finement. Where relevant, juxtaposition with isothermal
systems is made.

From the statistical mechanics stand point small isolated
systems correspond to a microcanonical ensemble and can be
studied by different methods: cluster variation, molecular dy-
namics, or Monte Carlo for small clusters. In the present
paper the mean-field~continuum! method is employed. This
method was originally introduced for the analysis of bulk
systems undergoing phase transformations but can be suc-
cessfully extended to small confining thermodynamic sys-
tems. On the atomic level, phase transition is viewed as a
cooperative motion of atoms which results in the change of
atomic configuration in the long range. To characterize this
process on the mesoscopic scale, the ‘‘coarse-grained’’ vari-
able is introduced. It is called a transition parameter and
designates a degree of transition in a small piece of a mate-
rial. The transition itself is manifested by the ‘‘crossing of a
barrier’’ separating different phases. Same atomic interac-
tions that are responsible for transition make the medium
effectively non-local in the sense that there is a certain pen-
alty if neighboring pieces attain different degrees of transfor-
mation. Section IV deals with systems of small sizes where
creation of an interface is not favorable. As a consequence, a
new phasethat is prohibited in large systems is found pos-
sible. This result is the main thrust of the present paper. In
Sec. V comparison with other studies is made which is fol-
lowed by the discussion in Sec. VI.

II. ISOLATED SYSTEMS IN THE THERMODYNAMIC
LIMIT

We consider a physical system composed of a large
numberN of identical particles~typically of the order of
1023) confined to a space of volumeV. At first the analysis
will be carried out in the so-called thermodynamic limit, viz.,
N→`, V→`, such that the ratioN/V stays fixed. In this
limit, a system possesses two types of properties: extensive,
those which are directly proportional to the size of a system,
i.e., N or V, and intensive, those which are independent
thereof. At this point it is advantageous to give a brief defi-
nition of a phase. We shall call a phase ahomogeneouspart
of a system distinguishable by a set of intrinsic parameters,
which has attained athermodynamic stabilityunder specified
external conditions. The latter may well affect the equilib-
rium, making different states of the system more favorable.
In the present study closed systems are analyzed which are
isolated from all external influences. The achievement of lo-
cal thermodynamic stability does not exclude a possibility
for a system to be in a metastable state~metastable phase!.
Except for homogeneous states, that is phases, various het-
erogeneous states may be possible. To obtain a complete
picture of equilibrium states in an isolated system the analy-
sis of local stability, when a state is being verified with re-
spect to the infinitesimal variations only, should be supple-
mented with the global stability analysis, when the variations
of higher order are not to be neglected. Thus the Gibbsian
‘‘Criterion of Equilibrium and Stability’’ may be reformu-
lated as follows:
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Among all possible states of an isolated system

the one which has more entropy for the same

energy is the most stable. ~1!

This is a criterion of the global stability when the variations
of all orders must be taken into account. It may be called the
equilibrium selection principle because it allows one to dis-
tinguish between several otherwise equivalently stable equi-
librium states.

To begin with, we shall analyze the stability of a homo-
geneous system occupied by one of the possible phases, the
number of which, for simplicity, will be reduced to the mini-
mum (a andb) in this study. Each phase is characterized by
its own entropy-versus-energy functionsj (ej ), that is Mollier
chart,5–7 wheresj andej are entropies and energies per unit
volume of the phasej5a or b. We will define theequaen-
tropic point to be the energy densityeab such that

sa~eab!5sb~eab!. ~2!

Without loss of generality, we suppose thata-phase is more
stable for high energies:sa.sb for e.eab andb-phase is
more stable for low energies:sa,sb for e,eab . Hence, the
entropy-versus-energy function of a homogeneous system
sH(e) consists of the pieces of the individual curves ofa and
b phases joined at the equaentropic pointeab , thus having a
cusp at the latter~Fig. 1!.

Different parts of the system may be occupied by differ-
ent phases of the matter. If homogeneous phases arecom-

bined, energies of individual phases are added. The entropy
of the combined~heterogeneous! system cannot be less than
the sum of equilibrium entropies of the separate phases, oth-
erwise phases will stay unrelaxed, see criterion~1!. For a
sufficiently large system we can ignore the contribution of
the internal interface separating the coexisting phases, if such
are present, and thermal fluctuations in the system~thermo-
dynamic limit!. Then, for the heterogeneous state represent-
ing a mixture ofa andb phases, the condition of equilibrium
and stability~1! takes the form

S[sa~ea!Va1sb~eb!Vb→maximum, ~3!

subject to the side conditions of conservation of energy

E[eaVa1ebVb5const ~4!

and volume

V[Va1Vb5const . ~5!

The constraints~4! and ~5! manifest the absence of energy
and mass fluxes into or out of the system and reflect the
isolation of our system from ambient bodies. Here,Vj is a
volume of the phasej which must be neither negative nor
greater than the whole volume of the systemV, yet may
vanish. Phase transformation is manifested in the variation of
one of these volumes at the expense of the other and may be
characterized by the fraction of the phaseb in the heteroge-
neous state

w[Vb /V. ~6!

According to the theorem of the conditional extremum,
there exist constantsl and m ~Lagrange multipliers! such
that the functionS1lE1mV has an unconditional extre-
mum. Taking into account thatsa is a function ofea only
and sb is a function ofeb only we arrive at the following
conditions:3–7

2l5
dsa

dea
5
dsb

deb
, ~7!

2m5sa1lea5sb1leb . ~8!

Besides being general conditions of equilibrium between two
bodies that are in contact with each other, Eqs.~7! and ~8!
determine energy densities of coexisting phases if entropy
densities of these phases are known as functions of the
former. Equation~7! means that at the energies of coexist-
ence,ea

E and eb
E , these functions have same slopes of the

tangent lines. Equation~8! means that the coordinates of one
phase, e.g., (eb

E , sb
E), belong to the extension of the tangent

line to the entropy function of another phase,sa(ea), at the
point of coexistence (eEa , s

E
a). Thus at the equilibrium,

entropy-density-versus-energy-density functions of coexist-
ing phases are connected by the common tangent. Obviously,
the equaentropic point lies between the equilibrium energy
densities of the two phases

eb
E,eab,ea

E . ~9!

There is another way of looking at Eqs.~7! and~8!: They
demonstrate which quantities are actually equilibrated be-

FIG. 1. Mollier chart. Average entropys̄ of a layer as a function of its
average energy for different phase states of the thermodynamic system with
Q50.1.a andb—bulk phases;g—adiabatic nanophase; 1,2,3—two-phase
states; 1—very thick layer~thermodynamic limit!; 2—thin layer~capillary
approximation!; 3—very thin layer~continuum theory!. Insert: Difference of
the entropy densities ofg anda states. The transition state is locally stable
beyond the pointM51 and globally stable beyondeag .
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tween phases at equilibrium. The condition~7! is a standard
definition of the temperature of bodies at equilibrium
TE[21/l. The condition~8! demonstrates that at equilib-
rium the free energy densities ofa andb phases, defined as
f j5ej2Tsj , are equal. Combined together, Eqs.~7! and~8!
allow to determine the equilibrium temperatureTE of the
coexisting phases3–7

f a~TE!5 f b~TE!. ~10!

Consider a first-order transformation from a one-
component phase insulated from other substances. Having
initial energy densitye0, the parent phase may become ca-
pable of decomposing into a mixture of phases. As the pro-
cess in question proceeds under conditions of insulation, the
total energy of the system stays constant during the transfor-
mation and is determined by the initial energy density of the
parent phase

E[e0V. ~11!

Thus Eqs.~3!–~6!, ~10!, and~11! yield the expression for the
total entropy of the system after transformation

Sa1b5
1

TE
@E2 f a~TE!V# ~12!

and the ‘‘lever rule’’ for the fractionw of the phaseb in the
equilibrium heterogeneousa1b mixture

wE55
1, e0<eb

E

ea
E2e0

ea
E2eb

E , eb
E<e0<ea

E

0, e0>ea
E

. ~13!

The total entropy of the mixture is a linear function of the
total energy of the system@Eq. ~12! and line 1 in Fig. 1#
because the temperature is uniform throughout the system
and equal toTE , Eq. ~7!. As the fraction of a heterostate
must be 0,w,1, Eq. ~13! curtails initial energies of the
parent phase that result in the creation of a state with phase
coexistence:eb

E,e0,ea
E .

TemperatureT and the specific heat for constant volume
CV of a heterostate are defined as follows:3–7

T[S dSdED 21

; VCV[
dE

dT
52S T2 d2SdE2D

21

. ~14!

They have evident interpretation on the Mollier chart as be-
ing inversely proportional to the slope of the tangent line
~temperature! and curvature of the plot~specific heat!. As a
consequence of Eq.~12!, a heterostate at equilibrium has the
same temperatureTE for all energies and possesses an infi-
nitely large specific heat, i.e., may accumulate a certain
amount of heat without any temperature raise, although the
volume of the system is limited. Obviously, this happens
because the fractionw of the state changes.

In the thermodynamic limit entropy and energy are ex-
tensive variables, that is they grow linearly with the size of
the system if other characteristics, like temperature or frac-
tion, do not change. We shall study now analytical properties

of the function entropy-per-unit-volume versus energy-per-
unit-volume, s̄ (e), of the system at equilibrium which is
depicted on the Mollier chart. Homogeneous states of the
system are represented in this function by their densities
s̄ (e)5sj (e) and heterogeneous states—by theiraverage
quantities: s̄ (e)5S(E/V)/V, whereE/V5e0 is the energy
density of the parent phase prior to transformation, see Eq.
~11!. According to the criterion~1!, for the decomposition of
the phasea to go, it should be thats̄ (e0).sa(e

0). Invoking
Eqs. ~7!, ~8!, ~10!, and ~12! and the fact that energy of a
stable bulk phase is a growing function of its temperature,
we arrive at the condition:

dsa~ea
E!

dea
,
sa~ea

E!2sa~e0!

ea
E2e0

~15!

which manifests the convexity of the thermodynamic func-
tion entropy-versus-energy of thea phase at the equilibrium
point sa(ea

E). Evidently, the same analysis is applicable to
the phaseb which results in the convexity of the function
sb(eb

E) at the equilibrium point. All pieces of the function
s̄ (e) that belong to homogeneous phasesa andb are prop-
erly convexed which is guaranteed by the positivity of the
specific heat, Eq.~14!. However, the functionsH(e), which
consists of the ‘‘homogeneous pieces’’ ofa and b phases
joined together at the equaentropic point, is not convex in the
vicinity of this point. To convexify this function the common
tangent construction, Eqs.~7!, ~8!, ~12! and ~13! are used.
The physical meaning of this procedure consists in the sepa-
ration of the system into a heterogeneous mixture of two
phases. Then the condition of equilibrium and stability~3!–
~5! takes the form

s̄ @we11~12w!e2#>w s̄~e1!1~12w! s̄~e2!.

This condition means that in the thermodynamic limits̄ (e)
is a convex upwardfunction of energy. Equality here is at-
tained at the equilibrium fractionwE , Eq.~13!. Thus one can
see that the average-entropy versus average-energy function
s̄ (e) is convex upwardeverywhere.

The basic features of transformations in isolated systems
can be elucidated on the Mollier chart~entropy-versus-
energy plot, Fig. 1! where entropies of different possible
states are represented as functions of their energies on a per-
unit-volume basis. For definiteness, below will be considered
a transformation from a high energy phasea. The curves
representing homogeneous phases intersect at the equaen-
tropic pointeab , see Eq.~2!. The straight line representing
thea1b mixture, Eq.~12!, is tangential to both single-phase
curves. The points of tangencyea

E and eb
E and the equaen-

tropic pointeab break the energy axes down into four dif-
ferent regions, cf. Eq.~9!: ~i! For the average energy density
aboveea

E the transformation does not go and the system stays
in the parent phase;~ii ! For the average energy density be-
tweenea

E andeab the system decomposes into two phasesa
andb of fixed energiesea

E andeb
E , and their relative propor-

tions are given by the lever rule, Eq.~13!; ~iii ! For the aver-
age energy density betweeneab andeb

E the equilibrium state
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also contains two phasesa andb of fixed energiesea
E , eb

E

and relative proportionwE . However, the transformation
path may pass through themetastablehomogeneous stateb
with the temperature above equilibriumal, and the system
may be trapped there. The real scenario of transformation
depends upon kinetic properties of the system.~iv! For the
average energy density beloweb

E , only phaseb will be
present in the system after transformation. It is curious to
inquire why in the regions~i! and ~iv! only ‘‘pure,’’ that is
unmixed, states exist, although the straight line correspond-
ing to thea1b mixture lies above the individual curves of
pure states. The answer is in the lever rule~13!, which gives
negative fractionw for the region~i! andw.1 for the region
~iv!.

It must be emphasized here that the described geometri-
cal analysis of an adiabatic system is completely analogous
to the common tangent construction in the thermodynamics
of binary alloys where the Gibbs free energy of alloys sub-
stitutes entropy of an adiabatic system and mass conserva-
tion of one of the components substitutes the energy conser-
vation. Transformation in the region~iii ! is reminiscent of
the solute trapping and in the region~iv! of the massive
transformation in alloys.

A. General criterion of bifurcation

According to the above formulated criterion of the glo-
bal thermodynamic stability~1!, a new state will ‘‘branch
off’’ of the homogeneous parent phasea when the entropy
of the former becomes greater than that of the latter for the
same energy of the system. On the Mollier chart a phase
transition is manifested by the bifurcation of the line of a
new state from the line of the parent one. As the size of the
system becomes smaller its phase diagram becomes more
complicated because several different homogeneous and het-
erogeneous states may branch off the parent phase at differ-
ent energies. There are many different ways how one can
characterize the energy of a system under consideration. It is
generally accepted that the best way to deal with a one-
component thermodynamic system is to set its energy and
entropy as functions of temperature and specific volume, if
the latter varies. Below we shall describe the outcome of
transformations in insulated systems of different sizes in
terms of the initialT0 and finalT* temperatures whereT0 is
the temperature of a homogeneous parent phasea prior to
transformation. To find the bifurcation parameters, tempera-
tures of the initialT0 and finalT* states, we shall introduce
the excess~singular! quantities of energy, entropy, free-
energy as the differences between the actual thermodynamic
functions of the system at equilibrium and those that the
homogeneous parent phase would have if it occupied the
entire volume of the system with the temperature equal to the
actual one and uniform throughout2

DH ES
F
J 5H ES

F
J

E

~T,V!2V3H es
f
J

a

~T!. ~16!

Such definitions are inspired by the fact that temperatures of
all the components of a heterostate at equilibrium are equal,
Eq. ~7!. For homogeneous states we may use the excess den-
sitiesD$e,s, f %, that is, the excess quantities per unit volume.

DF(T,V) may be either positive or negative. A transfor-
mation into a state withDF,0, as exemplified by the homo-
geneousa→b transformation at temperatures belowTE ,
may occur in an open, that is, isothermal, system. In this
case,2DF/V is called the driving force and is usually pro-
portional to (TE2T). On the other hand, a state with
DF(T,V).0 must not be a terminal state of transformation
in an open system of temperatureT and may serve only as an
activation barrier for such reaction. However, in an isolated
system a state withDF.0 may be the global optimizer, i.e.,
the end point of a transformation.

To elucidate the latter assertion, we shall formulate the
general criterion of bifurcation of a new state~either homo-
geneous or heterogeneous! from the parent phasea. To be-
gin with, notice that as the total energy is conserved

ea~T!5e02
DE~T,V!

V
, ~17!

whereT is the transformed-state temperature. Then, expand-
ing the functionsa(e) into the Taylor series and using the
definitions of temperature and specific heat~14! we obtain:

sa~e!5sa~e0!2
DE

VT0
2

1

2CVa
S DE

VT0D
2

1OF S DE

CVaVT
0D 3G .

On the premise of a small excess internal energy of the trans-
formationDE as compared to the thermal energy of the par-
ent phaseCVaT

0V, substitution of this relation into the defi-
nition of the excess quantities~16! yields the expression:

s̄~e0,V!2sa~e0!52
DF

VT*
1

1

2CVa
S DE

VT* D
2

1OF S DE

CVaVTE
D 3G . ~18!

Here,sa(e
0) is the entropy density of the initial state after

the preparation but before the transformation. For a transfor-
mation into a new state to go,s̄ (e0,V) must be greater than
sa(e

0). This is true for any state withDF,0 even if
DE50. An example of such transformation will be encoun-
tered in the next section. However, Eq.~18! shows that there
may exist an adiabatic transformation into a state with
DF.0 which will occuronly if the negative contribution to
the entropy due to the free-energy excess is offset by the
positive contribution due to the internal energy excess. At
the bifurcation point (s̄2sa

0) vanishes. Hence, transforma-
tion into a state withDF.0 requires the threshold energy
DE which may be found from the following equation:

DEth
2 ~T* !52CVaVT*DF~T* !. ~19!
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This equation may also be used to determine the bifurcation
temperatureT* of the transformed state withDF.0 while
temperature or energy of the parent phase at the start of the
transformation is determined by Eq.~17!. Notice that the
threshold energy of such bifurcation obeys the constraint

0,DF!uDEthu!CVaT
0V. ~20!

If more than one state branches off the parent phase
then, to assess the regions of their global stabilities, one
needs to apply the criterion~1! to these states directly be-
cause the criterion~17! and~19! is not applicable. However,
there is a way one can determine the global stabilities of two
states, different froma, and make use of the criterion~17!
and ~19!. Indeed, the state that branches off thea phaseat
larger energyis more stable around this bifurcation point
than another state that branches off at smaller energy. Ap-
parently, at still smaller energies there might appear to be
another bifurcation and these states may exchange their sta-
bilities. This wraps up the formulation of the general crite-
rion of the global stability of states as represented by the
simple one-component isolated system. Below this criterion
will be applied to different situations.

B. ‘‘Linear’’ thermodynamic system

It may be of interest to look at an example of a thermo-
dynamic system with equal and temperature-independent
specific heats in both phasesCVa5CVb5C. Such a system
can be calledlinear. For the temperature of the parent phase
at the bifurcation in the linear system, Eqs.~14!, ~17! and
~19! yield

T05T*6A2T*DF~T* !

CV
. ~21!

Note that at the bifurcation, temperature of the system
changes discontinuously by the jump fromT0 to T* .

As the entire volume of the systemV remains un-
changed, the latent heat at an arbitrary temperature can be
determined as follows:3,4,13

L~T![ea~T!2eb~T!. ~22!

Differentiating Eq.~22! with respect toT and keeping the
volume constant, we obtain the formula for the temperature
dependence of the latent heat

dL

dT
5CVa~T!2CVb~T!

which shows that the latent heat of the linear system is a
constant. This relation is analogous to the Planck’s formula
for open systems.3,4 Notice that in general the latent heat
cannot be determined via entropy differences of phases be-
causesa(T)2sb(T)ÞL(T)/T at arbitrary temperature. The
latent heat may be either positive: exothermic reaction, or
negative: endothermic reaction. Although both cases are pos-
sible, in the present study we are concerned mostly with the
former one which entails negative values ofDE for any het-
erostate wherea and b phases are mixed together in an

equilibrium proportion. Therefore, for exothermic transfor-
mation one should choose a negative sign in Eq.~21!.

It is advantageous to choose as the standard state of the
linear system the parent phasea at the equilibrium tempera-
ture TE : (ea

E50, sa
E50) and reckon energy and entropy

from this state. Then

ea~T!5C~T2TE!; sa~T!5C ln
T

TE
;

sa~e!5C lnS 11
e

CTE
D . ~23!

Notice that, as a result of such choice of the standard state,
the free energy of the parent state and its first derivative with
respect to temperature vanish at the equilibrium point. The
approximation of the temperature independent specific heat
simplifies our calculations in the vicinity ofTE but, appar-
ently, cannot be extended to very low temperatures. For the
product phase this yields

eb~T!5C~T2TE!2L; sb~T!5C ln
T

TE
2

L

TE
,

~24!

sb~e!5C lnS 11Q1
e

CTE
D2

L

TE
; Q5

L

CTE
.

ParameterQ, which is the ratio of the latent heatL to the
thermal energy densityCTE of the standard state, classifies
different transformations as weak, smallQ, or strong, large
Q.

Energy of the equaentropic point andTab
0 , Tab* of a

homogeneous bifurcation froma to b phase can be found by
the direct application of Eq.~2! to the linear system~23! and
~24!. This yields

eab52CTES 12
Q

expQ21 D ;
~25!

Tab
0 5TE

Q

expQ21
,TE ; Tab* 5TE

Q expQ

expQ21
.TE .

In the case of a weak transformation, which will be of special
interest for the discussion below,eab'2L/2, Tab

0 'TE
2L/2C, T* ab'TE1L/2C.

The average energy of the linear system may be conve-
niently expressed through the dimensionless supercoolingDu
as follows:

Du[~ea
E2ea

0 !/L5C~TE2T0!/L. ~26!

In alloys the role of supercooling is played by the supersatu-
ration normalized by the width of the miscibility gap. The
temperature of the final stateT* after transformation is
greater than that of the initial oneT0. There may be a special
reason why this temperature may attain the equilibrium
value:T*5TE . Then the bifurcation criterion~17! and ~19!
is greatly simplified and may be expressed in terms of the
threshold supercooling

Du th5A2DF~TE!

QLV
. ~27!
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Application of these ideas to the transformation in the
thermodynamic limit yields a trivial result that
T05T*5TE , and Du th50 becauseDF50. Depending
upon the initial temperatureT0, thea phase may either stay
untransformed~globally stable phase!, decompose into a
mixture of coexisting phasesa andb, or transfer completely
into another, more stable, phaseb. Decomposition starts
‘‘immediately’’ after the supercooling of the parent phase
~Du.0! and goes until the magnitude of supercooling attains
unit ~Du51!. For the equilibrium transformation fraction of
the heterostate Eqs.~13!, ~22!, and~26! yield

wE5Du. ~28!

For supercoolings higher than one parent phase will trans-
form entirely into the product phaseb.

III. INFLUENCE OF INTERNAL INTERFACE: THE
CAPILLARY APPROXIMATION

In the previous section we have analyzed the equilibrium
states of an isolated system in the thermodynamic limit of
infinitely large sizes where influence of a phase-separating
interface is negligible. Now we intend to assess thesize ef-
fect in isolated systems. We envisage an internal interface as
a thin layer of the areaA and thicknessl I!V/A that sepa-
rates two coexisting phases, encompasses rapid variations of
different physical properties between phases and is no ob-
stacle to the energy fluxes. For a more elaborate description
of an interface one may inquire in Refs. 2 and 4.

The entropysI attributed to the unit area of the interface
is a function of the internal energyeI of the same piece of
interface and isindependentof the energies of phasesa and
b that it separates. However, bothsI and eI may depend
upon the total volume of the systemV. The interfacial area
will be deemed dependent on the volume of the product
phaseVb only. All this changes the total entropyS of the
system by the amountsI(eI ,V)A and the total energyE by
the amounteI(V)A, cf. Eqs.~3! and~4!, but does not change
the total volume because we assume thatVI50 (NI50!.
Then application of the method of Lagrange multipliers to
the condition of equilibrium and stability~3!–~5! yields

2l5
dsa

dea
5
dsb

deb
5
dsI
deI

, ~29!

2m2
]~sI1leI !

]V
A

5sa1lea5sb1leb1~sI1leI !
dA

dVb
. ~30!

Equation ~29! shows that the introduction of an interface
does not change equality of temperatures of the phasesa and
b and allows to introduce the temperature of an interface
TI[(dsI /deI)

21, so that temperatures of all parts of the sys-
tem are equilibrated:TI5Ta5Tb . Equation~30! shows that
the size dependence of interfacial entropy and energy alone
do not change energies of coexistenceea

E , eb
E and the equi-

librium temperatureTE . However, the dependence ofA on

Vb alters the equilibrium. Using the definition of the free
energy, the equilibrium conditions may be expressed as fol-
lows:

f a~T!5 f b~T!1s~T,V!
dA

dVb
; s[ f I~T,V!5eI2TsI .

~31!

Here,s is the free energy of the unit area of the interface, the
surface tension, which is assumed to be positive. The area of
a regular~nonfractal! surface obeys a power law as a func-
tion of the encompassed volume:A5KDVb

121/D , whereD is
the dimensionality of the space. Then, substitution of Eq.
~31! into Eq. ~16! yields for the excess free energy of equi-
librium heterogeneous mixture ofa and b phases:
DF5sA/D.0. Application of the general criterion of bi-
furcation ~17! and ~19! shows that adiabatic transformation
into such a state always requires the threshold energy per
unit volume

uDEthu
V

5A2CT*s
A

DV
. ~32!

In what follows only a one-dimensional~1D! case will
be considered where the phase-separating interface is a
plane. So, we postulate that the heterogeneous layer is com-
pletely confined between the geometrical surfacesx50 and
x5X parallel to the interface, whereV5XA. Great simplifi-
cation of this problem stems from the independence ofA
from Vb which results in the equality of the free energy
densities ofa andb phases at equilibrium, Eq.~31!, hence,
the temperature of the heterostate isTE , Eq. ~10!. Then con-
ditions ~29! and ~30! allow us to express the entropy of a
two-phase layer reckoned from thea phase atTE as a func-
tion of the energy of the system reckoned from the same
state and the equilibrium value of the transformation fraction
as a function of the supercooling

S$a1I1b%5
E2sA

TE
; wE$a1I1b%5Du1

eI
LX

.

~33!

These relations show that the interfacial contribution does
not break a linear dependence between the average energy
e05E/XA and entropys̄5S$a1I1b%/XA of a two-phase
system at equilibrium, but introduces a constant shift in-
versely proportional to the system sizeX @Fig. 1, line 2; cf.
line 1 and Eq.~12!#. Comparing Eq.~33! with Eq. ~28! one
can see that transformation in a finite-size system yields
larger fraction of the low energy phase than that in the ther-
modynamic limit, unless the surface energy vanishes.

To find the supercooling at which this state bifurcates off
the parent phasea we shall apply the general criterion of
bifurcation, as expressed by Eqs.~17!–~21!, to the finite-size
1D system. In the capillary approximationDF5sA. The
fact that temperature of the heterostate$a1I1b% is TE
brings a great simplification to our task because Eq.~27! can
be used. Thus, for the threshold supercooling and energy at
the beginning of transformation Eqs.~17!, ~19!, and ~27!
yield
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eaI52LDuaI ; DuaI5A2
l C
X
; l C5

sCTE
L2

. ~34!

After the transformation, temperature of thea phase returns
to the equilibrium value:T*5TE and there appears a new
phaseb at the same temperature. Therefore, the reaction at
bifurcation can be expressed as follows:
a(TaI

0 )→$a1I1b%(TE), whereTaI
0 5TE2LDuaI /C.

This result shows that the necessity to create an interface
substantially retards the transformation in isolated systems.
Several comments should be made with regard to Eqs.~34!.
First, DuaI manifests a genuine supercooling of a parent
phase due to the finite dimension of the system rather than a
shift of the phase diagram. Second, we have to emphasize
that the adiabatic shift scales asX21/2 and constitutes a sur-
prisingly strong effect as compared to the isothermal
one17–20which scales asX21. This happens because an equi-
librium in an adiabatic system involves a phase-separating
interface which is not a part of equilibrium under isothermal
conditions. The isothermal size effect is completely due to
the change of the microscopic interaction at the surface as
compared to the bulk. Theoretically this is manifested in the
introduction of the ‘‘extrapolation length,’’ so that in a
sample with a free surface, i.e., noninteracting with the am-
bience, where extrapolation length diverges, the isothermal
finite size effect would vanish completely. On the contrary,
in adiabatic systems the size effect is present although the
surface prevents any microscopic interactions between the
system and environment, e.g., the energy flux is absent, so
that the system should draw resources for transformation
from itself. This delays a transformation until higher driving
forces and causes a supercooling. Third, one may notice that
to characterize a finite-size threshold supercooling in an iso-
lated system a new length scalel C comes about which is
called the capillary length. For weak transformations the cap-
illary length may be many times larger than the interatomic
distancel A5s/L. The same length scale,l C , determines the
Gibbs–Thompson effect or an equilibrium-temperature
change due to the curvature of an interface in many-
dimensional transformations. There are, however, important
differences between the former and the latter. The presence
of a curved interface entails the free energy change of the
minority phase, see Eq.~31!, and a shift of the equilibrium
temperature, while the flat interface does not alter the equi-
librium temperature of the 1D isolated system, that is
T*5TE , but the start of transformation is retarded, that is
TaI
0 ,TE . It is also of interest to note that a spherical nucleus

of the minority phase has different internal pressure and, at
most, is in unstable equilibrium with the majority matrix in
an isothermal system, while a heterogeneous mixture of
these phases separated by a flat interface constitutes a global
optimizer of an adiabatic system.

Obviously, much the same way as for the start of trans-
formation, one can obtain analogous expressions for the bi-
furcational energyebI , supercooling, and fraction at the end
of transformation or merging of the heterostate line with the
line of b-phase

ebI52L2eaI ; DubI512DuaI ; wbI512waI .
~35!

This expression concludes the study of the influence of
an internal interface on phase transformations in isolated
finite-size systems and demonstrates that energies of the be-
ginning and end of transformation deviate from the equilib-
rium ones in the thermodynamic limit, thus decreasing the
coexistence region. In Fig. 1 is depicted the equilibrium
average-entropy-versus-average-energy functions̄ (e,X) of
the finite-size system. It is represented by the ‘‘homogeneous
pieces’’ of thea andb curves for the energies aboveeaI and
below ebI respectively, and by the ‘‘heterogeneous straight
line 2’’ in between. Notice that in the vicinity of the bifur-
cational energieseaI and ebI convexity of the curve
s̄ (e,X) is violated. This occurs not because the intrinsic
properties of individual phases change but because combin-
ing individual phases in a finite-size system may decrease its
entropy after relaxation to equilibrium. The latter is due to
the creation of a phase-separating interface which, so to
speak, arrests more energy than releases entropy, Eqs.~33!.

The phase diagram is a network of lines in the control-
parameters space of a system that separate domains where
homogeneous stable states~phases! exist from the domains
where these states coexist. In Fig. 2 the phase diagram of a
finite-size system is depicted in the plane~average energy,
size! where the bifurcation conditions~34! and~35! are rep-
resented by the curveX* (e) that has two branches. The two-
phase$a1I1b% region is separated from the single-phase
ones by the low-energy branch on theb-side, Eq.~35!, and
the high-energy branch on thea-side, Eq. ~34!. Line 2

FIG. 2. Phase diagram of a finite-size adiabatic system in the plane energy-
density versus size. Hard lines-phase boundariesXa* (e), Eq. ~34!; Xb* (e),
Eq. ~35!; X̃(e), Eq. ~65!; eag , Eq. ~62!; egb .
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corresponds to the finite-size system of the linear dimension
X and the thermodynamic limit is not shown in Fig. 2.

Equations~34! and ~35! also allow another interpreta-
tion: temperatures of adiabatic transitions in opposite direc-
tions do not coincide in systems of finite size, e.g., melting
and freezing temperatures are not equal any more. This
manifests a hysteresis in a transformation behavior of such a
system when ‘‘freezing’’ starts at temperatureTf,TE and
‘‘melting’’ starts at temperatureTm.TE . For the width of
the hysteresis loop Eqs.~34! and ~35! yield

Tm2Tf

TE
5A 8s

CTEX
. ~36!

A. Partial equilibrium in isolated systems

Equations~29! and ~30! constitute conditions of the full
equilibrium in the system: The former means that tempera-
tures of the interface and both phases are equilibrated and the
latter implies that the temperature takes on a particular value
of TE . However, in a real transformation these two different
processes may have different time scales. Therefore it is of
interest to analyze apartially equilibratedsystem when tem-
peratures of both phases are equal@Eq. ~29! is fulfilled# but
not to the equilibrium temperature@Eq. ~30! or Eq.~8! is not
fulfilled#: Ta5Tb5TIÞTE . As the same definitions, Eqs.
~14!, may be used to determine temperature and specific heat
of a heterogeneous state away from equilibrium, the average
entropy of a 1D linear system as a function of average en-
ergy ~supercooling! and transformation fraction may be ex-
pressed as follows:

sX~Du,w!

C
5 lnF11QS w2Du2

eI
LX D G2Qw2

sI
XC

.

~37!

In Fig. 3 the quantitysX /C is depicted as a function of the
transformation fractionw for an infinitely large system~hard
line! and for a layer of finite thicknessX ~dashed curve!.
Analysis of the function~37! shows thats`(Du,w)/C attains
a maximum atw5Du, which coincides with Eq.~28!. The
shape of the curvesX(Du,w)/C is similar to that of the in-
finite system with the difference in the position of the maxi-
mum: It is lower on the amountsI /CX and displaced on the
amounteI /LX in the direction of greater fractions, cf. Eqs.
~33! and ~37!. Notice that in the domains 0,w,waI and
wbI,w,1 this function falls below the entropy of the cor-
responding homogeneous phase, that issX is not convex as a
function of w because the functional space of a finite-size
system is non-convex. Simply phrased, one can say that in
these domains the decomposition will not go because the
system cannot support heterostates with 0,w,waI and
wbI,w,1.

The above described analysis of the finite-size closed
systems may fail in case of very thin layers~small particles!
because some of the assumptions made are not valid. For
instance, if the interfacial thicknessl I is comparable with the
system sizeX, some space should be allocated for it which
will change the transformation fractionw. Looking at the
expression~34! one can conclude that the assumption of

small bifurcation energyeaI is satisfied in finite but not very
thin layers. The interfacial energy may change as a result of
interacting with the boundaries. And finally,a andb phases
themselves may alter in a confinement which will entail
change of the temperature of their coexistence.

IV. SMALL PARTICLES: THE CONTINUUM APPROACH

A. Transition state

As the system transforms from the initial state to the
final state it passes through a continuous series of intermedi-
ate configurations characterized by different magnitudes of
internal parameters and associated values of thermodynamic
functions. It is assumed that one of these intermediate
configurations—the transition or surface state—is a quasi-
equilibrium, labile ~according to Ostwald’s classification!
stateg which has unique values of these functions. From the
microscopic stand point in the transition state atoms do not
occupy stable positions but are in activated configurations,
that is ‘‘half-way’’ from one stable configurationa to an-
otherb. The excess of the free-energy density of the transi-
tion configurationD f g[ f g2 f a is known as the activation
barrier and should be positive, otherwise thea→b transfor-
mation is barrierless. A transition-state configurationgT can
be achieved in adiabatic transformation from the initial state
a0 only if energies of these states are equal:ea

05ea
T1Deg

T

@see Eq.~17!#. Importantly, there may be conditions in the
system when the parent phase becomes metastable with re-
spect to transformation into the homogeneous transition state
(a0→gT), no matter how strange this may sound. Indeed,
for certain energies of the system, the entropy of the transi-
tion stategT exceeds that of the parent phasea0 although

FIG. 3. Average entropysX of a layer as a function of the fractionw for the
initial supercoolingDu50.3 and different thicknesses of layersX: hard
line—very thick layer ~thermodynamic limit!; solid line—thin layer,
s/LX50.05 ~capillary approximation!.
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their energies are equal. For this to occur the parent phase
even needs not to be unstable and, in fact, may only be
slightly supercooled below the equilibrium point. In this
case, conceivably, there is another state that separates these
two and serves as a barrier for transformation.

The excess free energy density of a system, capable of
phase transition, contains two different energy scales: the
latent heatL[Deb(TE), Eq. ~22!, and the activation barrier
B[D f g(TE) at the equilibrium temperature. On the mesos-
copic level of description these two scales should be consid-
ered independent. In the present study we are concerned with
exothermic reactions from a higher symmetrya-phase to a
lower symmetryb-phase whereDsb

E52L/TE . Crystalliza-
tion may be an example of that. This suggests that

Dsg
E'2 1

2L/TE andDeg
E'B2 1

2L because, according to the
definition, the transition state is ‘‘half-way’’ betweena and
b. Of particular interest for the present discussion is a weak
first-order transition whereL!CTE . For thea0→gT transi-
tion in such system to occur, inequality~20! must hold:
B!uDeg

Eu!CTE , that is both energy scales are much
smaller than the average thermal energy

B!L!CTE . ~38!

The bifurcation temperatures of such transformation in a
linear system may be found from Eq.~17!

Tag
0 5Tag* 1

Deg~Tag* !

C
. ~39!

The activation configuration in the system, where conditions
~38! are fulfilled, is less energetic than the initial one would
have been at the same temperature becauseDeg

E,0. Hence
the temperature of the activated stateTag* is higher than that
of the parent phaseTag

0 and may be near the equilibrium
valueTE . Accepting the approximationTag* 5TE , Eq. ~19!
yields for the bifurcational energy

eag'2A2CTEB. ~40!

At energies less thaneag the transition state is more stable
than thea-phase but may be less stable than theb-phase. To
assess the stability of the transition state with respect to the
b-phase one needs to apply the criterion~3!–~5! to the latter.
However, the above formulated criterion~17!–~20! allows
one to determine whether theg-state is more stable than the
b-phase: thea→g bifurcation must occur at larger energies
~smaller supercoolings! than thea→b one, i.e.,

eag.eab . ~41!

Comparing expressions~40! and~25! for a weak transforma-
tion, we obtain that the condition~41! is fulfilled for materi-
als whose properties satisfy the criterion

U[
CTEB

L2
,
1

8
. ~42!

Calculations, analogous to those that lead to Eq.~40!, carried
out for theb-phase, yield the expression for the bifurcational

energy egb'2L2eag , where the transition-state-line
branches off of the homogeneousb-phase line, see Figs. 1
and 2.

One should not forget about another possibility in the
system that has been studied in the previous section, that is,
decomposition into a heterogeneous mixture ofa and b
phases. Therefore, the transition state, even if it is stable with
respect to both homogeneous phases, may become unstable
with respect to a heterogeneous state. To estimate this pos-
sibility one needs to apply the criterion~17! and ~19! to the
heterostate and find the state that branches off of the
a-phase first, as the energy of the latter decreases. To realize
this idea we can employ a simplified capillary approach of
Sec. III. Equating magnitudes of the threshold energieseaI

and eag , Eqs. ~34! and ~40! yields the expression for the
critical thickness

Xcr5
s

B
. ~43!

Thus in plates thinner thanXcr made of a material with
U,1/8, the parent phase must be replaced by the homoge-
neous transition state if the initial energy density of the sys-
tem is in a certain band around the equaentropic point
eab'2L/2. In plates thicker thanXcr the transformation
goes in the direction of the decomposition into a heteroge-
neous mixture ofa andb phases, see Figs. 1 and 2. Thus in
small thermally insulated systems the homogeneous transi-
tion state becomes the most stable one which means that this
state satisfies the definition of a phase. Such state may be
called adiabatic nanophase.Evidently, mechanical, electri-
cal and optical properties of such phase are different from
those of bulk phasesa and b. As it has been pointed out
above, there may occur another bifurcation at still smaller
energies after which a heterostate will gain the global stabil-
ity.

The conditions of the adiabatic phase stabilization as
represented by the critical magnitude of the parameter
Ucr51/8, see Eq.~42!, and the critical thicknessXcr , Eq.
~43!, are the principal results of this work. However, thus far
they were obtained with the help of an approximation
Tag* 5TE , which may not hold in reality.To determine the
conditions of adiabatic nanophase stabilization without un-
necessary approximations one needs to apply more elaborate
approach to this problem, which will be done below with the
help of the continuum method.

B. Continuum approach

To address the issue of small particles many different
theoretical methods can be used. In the present work we shall
take advantage of the continuum method which allows one to
study both equilibriumal and dynamical situations on the
same ground. Within the framework of this method a ther-
modynamic system, in addition to temperatureT and pres-
sure P, is characterized by another internal parameterh
which is a measure of disequilibrium in the system. At equi-
librium the latter takes on a specific value which can be
found from the proper thermodynamic condition and is a
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function of the local temperature and pressure:
hE5F(T,P). This parameter relates to the degree of a re-
action in the theory of chemical reactions and
macrokinetics,21 to the relaxation parameter in optics and
theory of liquids, to the degree of nonrigidity in the cluster
theory22 and magnetization in the theory of the magnetoca-
loric effect.23 In the theory of phase transitions it is associ-
ated with the symmetry change and is usually called order
parameter. However, many transitions may have little to do
with ordering, e.g., magnetic, polymorphic, freezing, spin-
odal decomposition. In what follows we shall call ittransi-
tion parameter. Transition parameter is also a part of consti-
tutive equations of materials, hence, making mechanical,
electrical, magnetic, optical, etc. properties dependent on the
transition parameter variations. The concept of the transition
parameter helps one to simplify the definition of a phase
which has been given in the beginning of the paper: homo-
geneous in the transition parameter and locally stable state of
a thermodynamic system we shall call a phase.

In the framework of the continuum approach the prob-
lem of equilibrium and stability in isolated systems should be
reformulated. If adiabatic conditions are maintained for a
system then its energyE, which should be written as a func-
tional, is a constant. If the system becomes heterogeneous
there is a certain penalty on it which is expressed by the
so-called gradient energy contribution into the functional of
the total energy.24,25 Then

E[E Fe~h!1
k

2
~¹h!2Gd3x5const, k.0. ~44!

The integrand here represents the energy density of a hetero-
geneous system. There are no conservation constraints on the
transition parameter because the latter is assumed to be non-
conserved. However, the total volume, unlike the transition
parameter, is conserved

V[E d3x5const. ~45!

According to the principle~1! the entropy functional
takes on a maximum value at the stable equilibrium state

S[E s~e,h!d3x→maximum. ~46!

Here the entropy functionalS is assumed not to contain the
gradient term. The entropys(e,h) and energye(h) densities
of a homogeneous system can be found if the free energy of
a unit volume of a material is known as a function of tem-
perature and transition parameter,f (T,h). For this one needs
to use the equilibrium Legendre transform with respect to
temperature because the transition parameter is not involved
in it

s~e,h!52
] f ~T,h!

]T
; f ~T,h!5e~h!2Ts~e,h!. ~47!

Thus in the framework of a continuum theory equilib-
rium states of an isolated system obey the conditions of the
isoperimetric problem in the calculus of variations, Eqs.

~44!–~46!. The properties of these states have been studied
extensively in Ref. 12 and will be reviewed here briefly. The
equilibrium states fall into two categories: those which allow
Lagrange multipliers and those which do not.26 The latter
states are inhomogeneous both in temperature and transition
parameter distributions. They may be realized in materials
with the vanishing thermal conductivity only12 and will not
be considered any further. The former states have uniform
distribution of temperatureT5(dS/dE)21 across the system
and benefit from the introduction of the free energy func-
tional

F[E F f ~T,h!1
k

2
~¹h!2Gd3x. ~48!

These are the same states as those of the isothermal system
and may be represented by solutions of the Euler equation

ò f ~T,h!

òh
2k¹2h50, T5const. ~49!

As the boundaries of the system in question do not interact
with the environment~free surface!, the variational problem
yields the Neumann-type boundary conditions

]nh50 at the surface. ~50!

C. Local stability of equiliubrium states

The free energy density of a system capable of undergo-
ing a phase transitionf (T,h) is a continuous function of the
transition parameter. Homogeneous solutions of Eq.~49!
h5hE(T), that is those with¹h50, correspond to the
maxima and minima of the free energy densityf (T,h) as a
function of the transition parameter.

To address a problem of phase transformations of the
first order we must assume thatf (T,h) has at least two
minima associated with thea andb phases.27 At the equilib-
rium temperature, transition parameter takes on the values
ha andhb in thea andb phases, respectively, and the free
energy densities of these states are equal@see Eq.~10! and
curve 2 in Fig. 4#. Since two minima of a continuous func-
tion must be separated by a maximum, it follows that the
transition stateg corresponds to the free energy maximum
~saddle in a multidimentional case! whose position between
the bulk phases may vary with temperature

dhg

dT
52

f hT~T,hg!

f hh~T,hg!
. ~51!

To ensure local stability under isothermal conditions
~open system!, the isothermal ‘‘stiffness’’ of the equilibrium
state should be positive:f hh(T,hE).0. This is true fora
andb phases:f hh(T,ha,b).0. The isothermal stiffness of
the transition state is negative:f hh(T,hg),0, Fig. 4. This
means that this state does not correspond to any metastable
bulk phase of an open system. However, constraint of isola-
tion changes the condition of local stability of this states11,12

and isothermally unstable stateh5hE will be thermody-
namically stable if the adiabatic stiffness of this state is posi-
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tive: f hh2( f hT)
2/ f TT>0. Hence, an isothermally unstable

transition stateg will be adiabatically stable if the modulus
M takes on a value greater than one

M[
f hT
2 ~T,hg!

f hh~T,hg! f TT~T,hg!
.1. ~52!

It is of interest to calculate the specific heat of the tran-
sition state. Substituting Eq.~51! into the definition~14! and
taking into account thatC5(]e/]T)h we arrive at the ex-
pression for the specific heat of the transition state

Cg[
de~hg!

dT
5S ]e

]TD
h

1S ]e

]h D
T

dhg

dT
5C~12M !. ~53!

This expression shows that when the transition state gains
adiabatic stability, its specific heat becomes negative which
means that such a state would be unstable in the bulk. With
regard to the entropy-versus-energy function of the transition
statesg(e), it is necessary to stress out that its plot ceases to
be convex upward as soon as the state becomes stable, see
Eq. ~14! and Fig. 1.

D. Global stability of equiliubrium states

Besides homogeneous solutions that correspond to the
bulk phasesa, b and the transition stateg, Eq.~49! is known
to have bounded heterogeneous equilibrium solutions that
correspond to the transition regions where transition param-
eter varies rapidly from the value on one side to the value on
the other side. In a 1D system Eq.~49! may be integrated
once to yield

k

2S dh

dxD
2

5D f ~T,h!2G; D f[ f ~T,h!2 f a~T!, ~54!

whereD f (T,h) is the excess free energy density of the sys-
tem. As a consequence of the no-flux boundary conditions
~50!, the integration constantG vanishes in the thermody-
namic limit but is not zero in a finite size system and has a
meaning of the excess free energy density on the surface

G5D f ~T,h1!5D f ~T,h2!. ~55!

Transition parameter values on the surface of a heteroge-
neous layer of finite thickness,h1 andh2, differ from bulk
values, ha and hb , and generate the surfacial ordering
(h12ha) and disordering (hb2h2), respectively.

General solution of Eq.~54! may be represented in the
form of Elliptic integral and is a vast subject in its own right:
it is either monotonic—interface, or periodic—domains and
interfaces. The latter are not considered in the present study
because they may be locally stable at most. Qualitative prop-
erties of the monotonic equilibrium heterostate~interface!
can be derived from the analysis of the bifurcational map

X5Ak

2Eh1

h2 dh

AD f ~h,T!2G
. ~56!

Also Eq. ~54! and boundary condition~55! help find the ex-
pressions for the surface energy and thickness of the inter-
face. Adopting the definitions of these quantities introduced
in Ref. 25, we obtain

s~T,X![E
0

X

k~¹h!2 dx; l I~T,X![
h22h1

maxu¹hu
. ~57!

There is an apparent analogy between equilibrium prob-
lem, as represented by Eqs.~54! and ~55!, and mechanical
problem of oscillations of a point massk with the speed
dh/dx in the potential fieldP(h)52D f (T,h), wherehg

corresponds to the bottom of the potential well. Equation
~54! manifests conservation of the mechanical energy,h1

andh2 have the meaning of the turning points, the thickness
of the layerX is analogous to the period of mechanical os-
cillations, interfacial thickness—to the time constant and the
surface energy— to the total action of the system. As is well
known, there impossible oscillations in such system faster
than harmonic ones, that is with small amplitude.

In a very thin layer the surfacial~dis!ordering becomes
very strong and the transition parameter distribution ap-
proaches the homogeneous magnitude of the transition state
parameter-hg . Equation~43! gives an approximate value of
the critical thicknessXcr such that in thinner plates the ho-
mogeneous transition state is the most stable one~adiabatic
nanophase!. The exact criterion of the global stability of the
transition state against a heterostate may be derived from the
analysis of the bifurcational map~56!. The mechanical anal-
ogy suggests that in a small vicinity of the transition state a
heterogeneous solution of Eq.~54! may be expressed as a
small harmonic modulationdh of the amplitudeH on the top
of a homogeneous transition statehg .Then the criterion of
bifurcation of such a solution from the homogeneous one
may be found from Eq.~56! as

FIG. 4. Free energy density of the system withQ50.1 andS50.009 as a
function of the transition parameter at different temperatures:~1! T,TE ;
~2! T5TE ; ~3! T.TE .
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X̃5A k

u f hh~T,hg!u E2H

H d~dh!

AH22~dh!2

5pA k

u f hh~T,hg!u
. ~58!

E. Adiabatic nanophase stability

To advance in the analysis of the adiabatic nanophase
stability it is desirable to have a comprehensive picture of the
free energy which reflects microscopic interactions in the
system and may be employed for the continuum approach.
Then Eqs.~17!–~20! and ~58! will help us refine the rough
estimates of the adiabatic nanophase-stability limits, made in
the beginning of this Section, based on the assumption of the
equilibrium temperature of the transition state. An important
question should be asked: How one can determine param-
eters of the free energy? One way to solve this problem
~macroscopic! is to obtain expressions for various measur-
ables and compare them with the experimental observations
of kinetics and equilibria in two-phase systems. Another way
~microscopic! consists in deriving parameters of the mesos-
copic free energy from an appropriate microscopic theory,
e.g., transition state theory, where the isothermal stiffnesses
f hh(TE ,ha,b) relate to the frequencies of intrawell vibration
while u f hh(TE ,hg)u relates to the interwell motion. Impor-
tantly to realize that the free energy might not necessarily be
symmetric with respect to theha andhb phases even at the
equilibrium temperature. Such asymmetry manifests in the
difference between the isothermal stiffnesses of the equilib-
rium states as well as in the different distances from the
transition-state parameterhg(TE) to that of the equilibrium
statesa andb. A strong indication of the asymmetry of the
free energy of the melting-freezing transition is a possibility
to supercool liquids for up to 100 degrees and virtual impos-
sibility to superheat solids at all. This may embody a prob-
lem for the modeling of the free energy potentials by the
polynomials of low order because the polynomial of the
fourth order, which is the lowest order polynomial to exhibit
the ‘‘double-well’’ shape, has equal second derivatives in
both minima. Thus polynomials may be used for modeling
the first order transitions close to the second order and are
not appropriate functions for modeling the strongly first or-
der transitions like melting-freezing.

Many robust characteristic features of transformations
can be drawn from properties of the transition state only.
Therefore, we shall not deepen into the study of analytical
functions appropriate for the purposes of the phase transition
modeling and we shall not consider effects associated with
the difference of isothermal stiffnesses ofa andb phases.
Instead, for the excess free energyD f we will use the ex-
pression

D f ~T,h!5
B

24
h2Fh2

2

3
~h12!h1h2G ,

h~T![113
24

S

T2TE
TE

, ~59!

whereS[B/L is the ratio of two basic scales of the free
energy. The transition parameters ofa andb phases remain
unchanged with temperature for this potential:ha50 and
hb51, and the location of the transition state depends upon
the normalized temperature :hg5 1

2h(T). This potential, see
Fig. 4, has been adopted from Refs. 12 and 28 where all its
properties may be found.

To apply the free energy~59! to the problem of adiabatic
phase stability, as expressed by the bifurcation criterion~17!
and~19!, one has to calculate the excess freeD f g and inter-
nal Deg energies of the transition state as functions of its
temperature and substitute these into Eq.~19!. The free en-
ergy ~59! yields D f g51/3Bh3(42h) and Deg5
21/4Lh2@32h24S(22h)2] and Eq.~19! takes the form:

U5
9

32
hag*

@32hag* 2S~22hag* !2#2

~42hag* !@324S~12hag* !#
. ~60!

The solution of this equation enables us to find the bifurca-
tion temperature Tag* and energy
eag5C(Tag* 2TE)1Deg(hag* ) and represent the bifurca-
tional criterion~41! as follows:

U,
3

32

12 1
2~hag* !2@32hag* 2S~22hag* !2#

12hag*
. ~61!

Equation~60! has a solution between the congruent points
h150 andh252 only if U,0.12. For small values ofU this
solution takes the form

hag* '
128

27
U; eag52

16

3
LUS 12

128

81
U D . ~62!

Then the criterion~61! alows us to conclude that the adia-
batic nanophase is possible for materials with parameters
such that:

U<Ucr[
3

32
'0.0938. ~63!

To determine the temperature of thelocal stability
boundaryTg of the transition state, as expressed by the in-
equality ~52!, one needs to calculate the modulusM and
equate it to one: M5(9/64U)hg(22hg)
3@12(16/3)S(12hg)#51. Solving this equation one can
find the normalized temperature and energy of the local sta-
bility boundary

hg'
32

9
U, eg' 2

16

3
LUS 12

16

9
U D . ~64!

Comparing Eqs.~62! and~64! one finds that the temperature
of the local stability boundary is less than that of the global
stability and both are less than the equilibrium temperature,
i.e., Tg<Tag* ,TE . However, the energy of the local stabil-
ity boundary is greater than that of the global stability be-
cause the specific heat of the transition state is negative@see
Eqs. ~52! and ~53! and Insert in Fig 1#. Hence, the energy
band of the global stability of the transition state is narrower
than that of the local stability, with the transition state being
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more stable than both homogeneous phasesa andb in the
energy bandegb,e,eag , whereegb'2L2eag .

However, as we discussed above, after transformation
the layer may turn heterogeneous if its thickness is greater
thanX̃, Eq.~58!. The free energy~59! allows one to calculate
the value of the bifurcational thickness and relate it implic-
itly to the initial energy density e05eg(h)
5C(T2TE)1Deg(h)

X̃5
Xcr

Ah~22h!
; Xcr5

p

4
Ak

B
. ~65!

To reveal the inherent nature of the critical thickness
~65! we need to analyze the properties of the phase-
separating interface with the surface energy and thickness as
the most important ones. The free energy~59! allows us to
determine the surface energy and thickness of the interface
betweena andb phases, Eqs.~57!, in the thermodynamic
limit

s`5
2

3
A2kB, l`5

1

4
A k

2B
. ~66!

Comparing the formulae~65! and ~66! one can see that
Xcr5A2p l` , i.e., the critical thickness is approximately
equal five times the interfacial thickness. The bifurcational
sizeX̃, below which the adiabatic nanophase appears on the
phase diagram, depends upon the initial energye0 ~super-
coolingDu) and may exceedl` up to 20 times~Fig. 2!. In
Sec. III we found that the heterostate zone on the phase
diagram (e,X) is separated from the single phase zonesa
andb by two branches of the curveX* (e), Eqs. ~34! and
~35! and Fig. 2. Merging ofX* (e) and X̃(e) creates two
‘‘triple points:’’ Tr a and Trb . Although behavior of the
phase boundary in the vicinity of these points is not known
to the author at present, he believes that, in fact,X* (e) and
X̃(e) represent one smooth curve that separates one-phase
and two-phase zones on the phase diagram. Also Eqs.~34!,
~38!, ~63!, and~66! prove that the adiabatic nanophase exis-
tence imposes the restriction on the hierarchy of length
scales in the system

l A! l C' l` . ~67!

Expressions ofUcr , Eq. ~63!, and the critical thickness
Xcr , Eq. ~65!, derived with the help of the mesoscopic free
energy~59!, refine the values of these parameters, Eq.~42!
and ~43!, estimated on the premise of the equilibrium tem-
perature of theg state after transition and demonstrate that
the latter assumption is reasonable. Eq.~39!, for instance,
reveals the nature of thea→g transition as a weakly first
order because there is a small jump between temperatures of
the phases, that is inverse derivatives of entropy with respect
to energy. At the same time, the continuum method allows
one to arrange the bifurcational energies on the phase dia-
gram of a system with smallU in the ascending order:
eb
E,egb,eab,eag,eg,ea

E , and to identify the region of
stability of the adiabatic nanophase on the phase diagram
(e,X) as the box of the widthL@12(U/Ucr)1(4/27)
3(U/Ucr)

2# around the center of the two-phase zone

~equaentropic point! and the heightXcr which is inversely
proportional to the square root ofB, Figs. 1 and 2.

V. COMPARISON WITH OTHER STUDIES

Umantsev and Olson28 carried out the numerical simula-
tion of transformation dynamics in layers of materials with
different parametersU, thicknessesX, and initial supercool-
ings Du. The authors found that in the thin layer of the
thickness 1.125Xcr ~line 3 in Fig. 2! the transition state ap-
peared and did not decompose for supercoolings
0.25,Du,0.285, although in a large system ofX'100Xcr

with the same parameters the ultimate equilibrium had been
attained on the heterogeneous mixture ofa and b phases.
For larger values ofDu the equilibrium distribution of the
transition parameter in a thin layer appeared to be modulated
by a harmonic wave of a small amplitude. This type of the
dynamic behavior supports the inference that the transition
state may be the most stable one when in confinement. In
Ref. 29 the authors analyzed thelinear dynamic stabilityof
homogeneous equilibrium states in 3D systems of arbitrary
shape. The analysis revealed that such a state is linearly
stable if the following two conditions are simultaneously sat-
isfied:

f hh2~ f hT!2/ f TT>0 for uku50

and

f hh1kk2>0 for ukuÞ0, ~68!

wherek is the wave vector of the permitted perturbations. In
the thermodynamic limit of an infinite system all perturba-
tions, including long range ones withuku→01, are permis-
sible. This yields the criterionf hh>0 which is fulfilled for
statesa,b and is not fulfilled for the transition stateg. How-
ever, this is not so in a confinement where the permitted
wavevectorsk of heterogeneous modes constitute a discrete
set with the limited from below absolute valueuku. Likewise,
confinement of traveling waves entails standing waves with
quantized frequencies. The quantization of permitted
wavevectors stabilizes the transition stateg. In a 1D layer
with the boundary conditions~50! minuku5p/X and the cri-
terion of linear stability~68! for the transition state takes the
form that coincides completely with Eqs.~52! and ~58!
which have been derived from the thermodynamical prin-
ciple of the global stability~1!. Combination of thermody-
namic and dynamic stability analyses compels us to believe
that the globally stable transition state is a truly equilibrium
phase and not an artifact. It comes about as a result of two
mutually assisting factors: adiabatic insulation and confine-
ment, and inequalities~68! are the conditions for the exis-
tence of the adiabatic nanophase.

Molecular dynamics have been extensively used for the
analysis of structural evolution ofclusters~small particles! at
constant energy. When molecular dynamics is used to ana-
lyze the behavior of materials, one has to be careful while
interpreting computer experiments because they are usually
done under systems of finite size and constant energy. Rose
and Berry30 studied melting and freezing of small salt clus-
ters~K-Cl!. They found that in a certain energy band, except
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solid-like and liquid-like, other states that correspond to the
saddle points of the potential energy surface are possible. In
some experiments the ‘‘equilibrium’’ has been achieved on
‘‘fluctuating states.’’ Similar results were observed earlier by
Sugano and Savada in the six-particle transition-metal
clusters.31

Suzuki and Takahashi32 studied the nucleation mecha-
nism for the martensitic transformation in the crystal com-
posed of particles interacting with 12-6 and 8-4 Lenard-
Jones potentials. They observed that the bcc lattice always
transformed through a martensitic transformation into one of
the mechanically stable, fcc or hcp, structures when in large
volumes or even in small volumes but with the 12-6 poten-
tial. However, the 8-4 type lattice did not exhibit a marten-
sitic transformation and remained bcc when confined to a
small volume of the order of nanometers. This stabilization
mechanism, related to confining geometries, remained unex-
plained in the paper and may be understood on the basis of
the present treatment. Mechanical instability of the bcc lat-
tice occurs because the (C112C12) elastic stiffness of this
structure is negative for both types of potentials.32,33 As
strain is the transition parameter for martensitic transforma-
tions, the elastic stiffness isf hh and the bcc structure may be
interpreted as the transition state between two stable configu-
rations. In addition, mechanical calculations of Ref. 33 show
that the absolute value of the 12-6 type elastic stiffness is
approximately seven times greater than that of the 8-4 lattice.
Although not stated explicitly, the numerical experiments
were conducted apparently under adiabatic conditions.
Therefore, the homogeneous stability of the lattice instead of
the isothermal stiffnessf hh is determined by the adiabatic
one f hh2( f hT)

2/ f TT which is more positive than the former.
Notice that the second term here is proportional to the ther-
mal expansion coefficient squared.34 Of course, lattice stabil-
ity can be infringed not only by homogeneous distortions but
by heterogeneous ones also. All this has led us to the second
condition of stability in confined geometries:
f hh1k(p/X)2>0. Apparently, both conditions are satisfied
for small particles of the 8-4 type lattice, despite its isother-
mal mechanical instability, but the second condition is not
satisfied even for the smallest sizes of the 12-6 type lattice
because the isothermal stiffnessf hh of this lattice is ‘‘very
negative.’’

Cheyssac, Kofman and Garrigos35 optically investigated
solid–liquid phase transition in lead aggregates of very small
sizes~from 23 to 300 Å! and found a huge hysteresis in the
reflectance-versus-temperature curve which meant that there
was a wide gap between temperatures of melting and freez-
ing of aggregates. The isothermal size effect may account
only for the melting temperature decrease while strong su-
percooling of the liquid phase below the melting temperature
should be explained by the adiabatic effect@see Eq.~34!, the
subsequent discussion and Eq.~36!#. Appearance of the adia-
batic nanophase may be responsible for the disappearance of
the hysteresis for the lower sizes.

Kim, Lin and Kelly36 studied solidification of submicron
droplets, 10-60 nm, of high purity elemental metals by elec-
trohydrodynamic atomization in vacuum when droplets so-

lidify in the free flight. They found that under extreme con-
ditions of high cooling rates and very small liquid volumes
some pure metals solidified from the melt as an amorphous
phase. Also they found that the critical size increased with
decreasing melting temperature of each bcc metal except iron
and that the glass transition temperature increased with the
latent heat of fusion. The combination of high cooling rates
and small volumes of particles as necessary conditions for
amorphization conjectures that the amorphous phase may be
identified with the adiabatic nanophase considered in the
present paper. A possibility for a material to have adiabatic
phase is determined by the magnitude of the parameterU,
Eqs.~42! and~63!. This may explain why some pure metals
do exhibit amorphous states and some don’t. The maximum
temperature of the parent phase~liquid! when the transfor-
mation into adiabatic phase becomes possibleTag

0 , Eq. ~39!,
may be associated with the glass transition temperature. The
support for the adiabatic theory of amorphization also comes
from the fact that the glass transition temperature increases
together with the latent heat.36 More details on the adiabatic
theory of amorphization will be presented elsewhere.

Experimental estimates of the critical sizeXcr , Eq. ~43!,
may be used for the determination of the activation barrier of
transition if the surface energy is known from independent
measurements. For the solid-liquid transition in simple met-
als,Xcr ranges from few to tens of nanometers.35,36 Taking
100 ergs/cm2 as a typical value of the solid-liquid surface
tension, we estimate the activation barrierB as 107 J/m3.
Unfortunately, independent estimates or direct measurements
of this quantity are not known to the author although it is
important for the nucleation theory.

Above described results of numerical and physical ex-
periments suggest that the constraint of energy conservation
stabilizes saddle-point configurations and provide a reason-
able proof for the adiabatic nanophase appearance after
transformations. It may be advantageous to try in the future
to conduct experiments under conditions of adiabatic insula-
tion instead of isothermal ones.

VI. DISCUSSION

In this work a one-component system capable of under-
going a first-order phase transition was analyzed under con-
ditions of thermal insulation. The functional space even of
the simplest possible system without spinodal or critical
points and with only two bulk phases,a and b, contains
different states which may be at least locally stable at appro-
priate energies. Among most important ones for the present
discussion should be named the heterogeneous state where
a andb phases are physically separated by the interface and
the homogeneous transition stateg which separatesa from
b in the functional space. Transformation fractionw is the
most convenient quantitative characteristic of a heterostate,
while the transition parameterh characterizes the homoge-
neous state. To determine the most stable state we used the
Clausius-Gibbs criterion~1! of the global stability which
may be expressed in the form of the general criterion of
bifurcation of various states. The main hardness of the global
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stability analysis stems from the fact that the states to be
compared do not occupy neighboring volumes in the phase-
space of the system.The global stability criterion takes the
form of Eqs.~17! and~19! if the excess quantities of the state
satisfy inequality~20!. Unlike an open~isothermal! system
where the global optimizer in the thermodynamic limit is a
completely structureless~homogeneous! state, in a closed
~adiabatic! system the global optimizer may have a structure,
that is may be a heterogeneous mixture of coexisting phases
a andb, if the average energy of the system belongs to a
certain band:eb

E,e,ea
E . Importantly that in adiabatic sys-

tem the global stability may be achieved on the state that
does not have minimum free energy at that temperature. In-
deed, the surface energysA of a heterostate is the free en-
ergy surplus which would have been absent in a homoge-
neousa or b phase at the equilibrium temperature. Notice
that the latter possesses a certain degree of ‘‘stability’’ in the
sense that, in the energy band of phase coexistence, tempera-
ture of a system tends to the equilibrium value regardless of
its initial magnitude. In Fig. 1 entropies of different locally
stable equilibrium states of an adiabatic system are depicted
as functions of their energies. The lines of bulk phasesa and
b intersect at the equaentropic pointeab . It is advantageous
for a system to create an internal interface separating two
stable phasesa andb in the energy bandeb

E,e,ea
E which

includes the equaentropic point. The straight line 1 in Fig. 1,
which is tangential to both single phase curves, represents
thea1b heterostate, Eq.~12!. The points of tangencyea

E and
eb
E and the equaentropic pointeab break the energy axes
down into four different regions where the parent phase ei-
ther transforms completely into phaseb (e,eb

E , ‘‘massive’’
transformation!, or (eb

E,e,ea
E) decomposes into a two-

phase heterostate ofa andb phases with fixed energies,ea
E

andeb
E , respectively, and the relative proportions given by

the lever rule~13!. For the average energy density above
ea
E the transformation does not go at all and the system stays
in the parent phase. In the energy bandeb

E,e,eab the trans-
formation path passes through the metastable homogeneous
stateb of the temperature above equilibriumal, and the sys-
tem may be trapped there~heat-trapping!. The real scenario
of transformation depends upon thermodynamic and kinetic
parameters of the system.37 For instance, if parameterU is
small enough,U!1, thea→b transformation takes a path
of continuous modulations wich is directly analogous to the
spinodal decomposition when the system generates many in-
terfaces at the beginning and slowly eliminates them later
~coarsening!. On the other hand, ifU is large enough,
U@1, the transformation follows a traditional path of nucle-
ation and growth with the hybrid mode possible for moderate
U*1.

The transformation in a closed system of finite size does
not start immediately after supercooling ofa phase below
the equilibrium temperature but is deferred until greater
magnitudes of supercoolings. The main reason of existence
of the threshold energyeaI is the necessity to accommodate
an interface which possesses the interfacial energy. In the
energy bandebI(X),e,eaI(X), Eqs. ~34! and ~35!, tem-
perature of the heterostate equals equilibriumal which means

that the free energy of this state is greater on the amount
DF5sA than that of homogeneous phasesa or b at the
same temperature. On the Mollier chart~Fig. 1! the het-
erostate of a finite-size system is represented by the straight
line 2 which lies below that of the infinite system. An im-
portant finding of this study is the revelation of a strong size
dependence (}X21/2) of the adiabatic phase diagram which
is not the case in the isothermal system where the size-effect
is due to the surfacial interactions exclusively.

However, the most striking feature of an adiabatic sys-
tem is the stabilization of the transition state in very small
particles of materials withU,Ucr . The beauty of this result
is the fact that the transition state possessesmaximum free
energyamong all other homogeneous states of the system at
the same temperature. This result suggests that all transitions
may be classified with respect to the value of the parameter
U. The transition stateg is locally stable in the energy band
where the adiabatic ‘‘stiffness’’ is positive and theg-state
line in this domain is convex downward, see Eq.~52! and in
Fig. 1. The global stability of this state spreads over slightly
narrower energy band (ebg ,ega), Eqs.~62! and ~64!, where
the end points are the intersections of theg-state line with
theb anda bulk-phase-lines respectively~Fig. 1!. The gen-
eral criterion of stability~17!–~20!, demonstrates that the
a→g transition is weakly first-order because there is a small
jump of the derivative of entropy with respect to energy, that
is inverse temparature. The thermodynamic stability analysis
demonstrate that there exists the critical thicknessXcr such
that in layers of thickness less than the criticalX,Xcr cre-
ation of a phase-separating interface is not favorable and the
transition state becomes the global optimizer–adiabatic
nanophase. Linear dynamic stability analysis confirms the
inference of the absolute stability of such a phase in layers of
thicknessX,Xcr . This makes the activated configuration
globally stable in this energy band not only with respect to
the bulk phases but with respect to the heterostate also.

The bifurcational scenario is different in systems of dif-
ferent sizes and actually may be very peculiar. As energy
density of a particle with the linear size that corresponds to
the dashed line 3 in Fig. 2 decreases beloweag , the parent
phase transforms into the adiabatic phase. Further reduction
of energy leads to the appearance of heterogeneity in the
system which will be replaced by the adiabatic phase again if
energy is decreased even further. In this window of instabil-
ity a heterogeneous structure of a particle consists of regions
occupied bya-like andb-like phases with relative propor-
tion dependent on the energy of the particle. The last bifur-
cation occurs atebg when the adiabatic phase transforms into
the homogeneousb-phase.The bifurcational sizeX̃ depends
slightly upon energy of the system and may span from few to
20 interfacial widths@Eq. ~65! and Fig. 2#. Stabilization of
the transition state comes about as a result of two mutually
assisting constraints: insulation and confinement. In small
3D spheroidal or cuboidal particles this effect is enhanced by
the dimensionality of the system as compared to the 1D lay-
ers considered in the present study. It is completely equilib-
riumal effect which has nothing to do with kinetics in con-
finement. Notice that, while heat transfer outside of the
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system is not permitted, the thermal conductivity inside the
system is normal. In Sec. I we explained that before the
transition the system should be prepared in the supercooled
state and isolated from the environment then. If one would
open the system up after the transition to adiabatic phase and
expose it to the heat exchange with a thermal reservoir of the
same temperature, it will destroy the delicate balance of the
adiabatic nanophase and shift the equilibrium in the direction
of a or b phase. This property of adiabatic nanophase allows
one to use such materials as sensors of insulation.

In case of small particles of solid solution, where mass
conservation replaces the conservation of energy, present re-
sult predicts the appearance of the new stable phase with
composition deeply inside the miscibility gap. This phase
should occur at the normalized supersaturation about 0.5. To
conclude, we can say that dispersion of particles in compos-
ite materials is a very efficient way to alter their properties
and has a strong potential in the creation of new multiphase
smart materials.
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