
Fayetteville State University Fayetteville State University 

DigitalCommons@Fayetteville State University DigitalCommons@Fayetteville State University 

Math and Computer Science Faculty Working 
Papers Math and Computer Science 

2-1-2011 

Additivity Of Jordan (Triple) Derivations On Rings Additivity Of Jordan (Triple) Derivations On Rings 

Wu Jing 
Fayetteville State University, wjing@uncfsu.edu 

Fangyan Lu 
Suzhou University 

Follow this and additional works at: https://digitalcommons.uncfsu.edu/macsc_wp 

Recommended Citation Recommended Citation 
Jing, Wu and Lu, Fangyan, "Additivity Of Jordan (Triple) Derivations On Rings" (2011). Math and Computer 
Science Faculty Working Papers. 5. 
https://digitalcommons.uncfsu.edu/macsc_wp/5 

This Article is brought to you for free and open access by the Math and Computer Science at 
DigitalCommons@Fayetteville State University. It has been accepted for inclusion in Math and Computer Science 
Faculty Working Papers by an authorized administrator of DigitalCommons@Fayetteville State University. For more 
information, please contact dballar5@uncfsu.edu. 

https://digitalcommons.uncfsu.edu/
https://digitalcommons.uncfsu.edu/macsc_wp
https://digitalcommons.uncfsu.edu/macsc_wp
https://digitalcommons.uncfsu.edu/macsc
https://digitalcommons.uncfsu.edu/macsc_wp?utm_source=digitalcommons.uncfsu.edu%2Fmacsc_wp%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uncfsu.edu/macsc_wp/5?utm_source=digitalcommons.uncfsu.edu%2Fmacsc_wp%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dballar5@uncfsu.edu


ADDITIVITY OF JORDAN (TRIPLE) DERIVATIONS ON RINGS

WU JING AND FANGYAN LU

Abstract. Let δ be a mapping from ring R into itself satisfying

δ(ab+ ba) = δ(a)b+ aδ(b) + δ(b)a+ bδ(a)

or
δ(aba) = δ(a)ba+ aδ(b) + abδ(b)

for all a, b ∈ R. Under some conditions on R, we show that δ is additive.

1. Introduction and Preliminaries

In recent years, there has been a great interest in the study of additivity of
mappings on rings as well as operator algebras (see [3] - [8], and references therein).
Most of these results focus on the additivity of multiplicative maps, Jordan (triple)
multiplicative maps, and Jordan elementary maps on rings, triangular algebras,
and operator algebras. The first result in this direction is due to Martindale III
who obtained the following pioneer result in 1969.

Theorem 1.1. ([8]) Let R be a ring containing a family {eα : α ∈ Λ} of idempo-
tents which satisfies

(1) xR = {0} implies x = 0.
(2) If eαRx = {0} for each α ∈ Λ, then x = 0 (and hence Rx = {0} implies

x = 0).
(3) For each α ∈ λ, eαxeαR(1− eα) = {0} implies eαxeα = 0.
Then any multiplicative bijective map from R onto an arbitrary ring R′ is addi-

tive.

Recall that an additive mapping δ from ring R into itself is called a Jordan
derivation if for any a ∈ R

δ(a2) = δ(a)a+ aδ(a),

and δ is called a Jordan triple derivation if

δ(aba) = δ(a)ba+ aδ(b)a+ abδ(a)

for any a, b ∈ R. Recently, it has been proved in [6] that if R is a 2-torsion free
unital prime ring containing a nontrivial idempotent and δ : R → R is a mapping
satisfying

(1.1) δ(ab+ ba) = δ(a)b+ aδ(b) + δ(b)a+ bδ(a)
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or

(1.2) δ(aba) = δ(a)ba+ aδ(b) + abδ(b)

for all a, b ∈ R, then δ is automatically additive. Moreover, δ is not only a Jordan
(triple) derivation but also a derivation.

The aim of this paper is to generalized the results of [6] to a larger class of rings.
Note that our approaches are different from those in [6] which mainly depend on
the existence of identity element in the underlying rings.

Let R be an arbitrary ring with a nontrivial idempotent e. We write e1 = e and
e2 = 1− e1. Note that R need not have identity element. Put eiRej = Rij for any
i, j = 1, 2. Then we have the Peirce decomposition of R as R = R11 ⊕R12 ⊕R21 ⊕
R22. Throughout this paper, the notation aij will denote an arbitrary element of
Rij and any element a ∈ R can be expressed as a = a11 + a12 + a21 + a22.

Let’s state our main results.

Theorem 1.2. Let R be a ring containing a nontrivial idempotent and satisfying
the following conditions for i, j, k ∈ {1, 2}:

(P1) If aijxjk = 0 for all xjk ∈ Rjk, then aij = 0.
(P2) If xijajk = 0 for all xij ∈ Rij, then ajk = 0.
(P3) If aiixii + xiiaii = 0 for all xii ∈ Rii, then aii = 0.
If a mapping δ : R→ R satisfies

δ(ab+ ba) = δ(a)b+ aδ(b) + δ(b)a+ bδ(a)

for all a, b ∈ R, then δ is additive.

Theorem 1.3. Suppose R is a ring containing a nontrivial idempotent and satisfies
the following conditions:

(P1′) If a11x12 = 0 for all x12 ∈ R12, then a11 = 0.
(P2′) If x12a22 = 0 for all x12 ∈ R12, then a22 = 0.
(P4) If xijaxij = 0 for all xij ∈ Rij (i, j ∈ {1, 2}), then aji = 0.
If a mapping δ : R→ R satisfies

δ(aba) = δ(a)ba+ aδ(b) + abδ(b) for all a, b ∈ R,
then δ is additive.

Obviously, Conditions (P1′) and (P2′) are special cases of (P1) and (P2), respec-
tively.

Recall that a ring R is prime if aRb = {0} implies that either a = 0 or b = 0,
and is semiprime if aRa = {0} implies a = 0. We need the following lemma which
is due to Brešar.

Lemma 1.4. ([1]) Let R be a 2-torsion free semiprime ring and let a, b ∈ R. If for
all x ∈ R the relation

axb+ bxa = 0

holds, then axb = bxa = 0 is fulfilled for all x ∈ R.

The following lemmas show that Conditions (P1) to (P4) are fulfilled if R a
2-torsion free semiprime ring under some technical assumptions concerning the
nontrivial idempotent or a 2-torsion free prime ring with a nontrivial idempotent.

Lemma 1.5. Let R be a 2-torsion free semiprime ring with a nontrivial idempotent,
then
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(P3) If aiixii + xiiaii = 0 for all xii ∈ Rii, then aii = 0.
In addition, if R satisfies the following conditions:
(C1) If aiixij = 0 for all xij ∈ Rij (i 6= j), then aii = 0;
(C2) If xjiaii = 0 for all xji ∈ Rji (i 6= j), then aii = 0;
(C3) If xijaxij = 0 for all xij ∈ Rij (i 6= j), then aji = 0,
then Conditions (P1), (P2), and (P4) are fulfilled, respectively. That is,
(P1) If aijxjk = 0 for all xjk ∈ Rjk, then aij = 0.
(P2) If xijajk = 0 for all xij ∈ Rij, then ajk = 0.
(P4) If xijaxij = 0 for all xij ∈ Rij (i, j ∈ {1, 2}), then aji = 0.

Proof. (P3) If i = 1, we rewrite a11x11 + x11a11 = 0 as

e1ae1xe1 + e1xe1ae1 = 0 for all x ∈ R.

By Lemma 1.4, we obtain that e1ae1xe1 = 0, which yields that e1ae1xe1ae1 = 0 for
all x ∈ R. Since R is semiprime, it follows that e1ae1 = 0. Equivalently, a11 = 0.

Suppose now that i = 2. We would like to mention here that e2 is not necessarily
in R. Observe that

a22x22 + x22a22 = 0 for all x22 ∈ R22

is equivalent to

e2ae2xe2 + e2xe2a2 = 0 for all x ∈ R.
Furthermore, for any x, y ∈ R, we have

e2ae2xe2ye2 + e2xe2ye2ae2 = 0,

which implies that

e2ae2xe2ye2 = −e2xe2ye2ae2.
Now for any z ∈ R, using the above equality three times we obtain

(e2ae2xe2ye2)ze2ae2xe2ye2

= −e2xe2ye2ae2ze2ae2xe2ye2
= −e2xe2y(e2ae2)(e2ze2ae2xe2ye2)

= e2xe2ye2ze2ae2xe2ye2ae2

= (e2xe2ye2ze2ae2xe2ye2)(e2ae2)

= −e2ae2xe2ye2ze2ae2xe2ye2.

Since R is 2-torsion free, we see that e2ae2xe2ye2 = 0 holds for all x, y ∈ R. And
so e2ae2xe2ye2ae2xe2 = 0. By the semiprimeness of R we get e2ae2xe2 = 0 for all
x ∈ R. This leads to e2ae2xe2ae2 = 0 for all x ∈ R. Again, using the fact that R
is semiprime, we can conclude that e2ae2 = 0, i.e., a22 = 0, as desired.

(P1) In view of Condition (C1), we only need to show the cases of j = k and
j 6= k = i.

Assume first that j = k and aijxjj = 0 for all xjj ∈ Rjj . Equivalently, we have
eiaejxej for all x ∈ R, which implies that eiaejxeiaej for all x ∈ R. It follows that
eiaej = 0 since R is semiprime, that is aij = 0.

If j 6= k = i and aijxji = 0 for all xji ∈ Rji, then eiaejxei = 0 for all x ∈ R.
Therefore eiaejxeiaej = 0 for all x ∈ R. Using the fact that R is semiprime, we
see that eiaej = 0, i.e., aij = 0.

(P2) Similar to the proof of (P1).
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(P4) It suffices to show that if xiiaxii = 0 for all xii ∈ Rii then aii = 0.
Let xii, yii, zii ∈ Rii be arbitrary. From (xii + yii)a(xii + yii) = 0 we can get
xiiayii + yiiaxii = 0 which is equivalent to

xiiayii = −yiiaxii.

Applying this equality three times we have

(xiiayii)azii = −yiia(xiiazii) = (yiiazii)axii = −xiiayiiazii.

This yields that xiiayiiazii = 0 since R is 2-torsion free. Particularly,

(eiaxiiaei)y(eiaxiiaei) = 0

for all y ∈ R. It follows that eiaxiiaei = 0 for all xii ∈ Rii since R is semiprime.
Furthermore, we have (eiaei)x(eiaei) = 0 for all x ∈ R., and so eiaei = 0, i.e.,
aii = 0.

�

Lemma 1.6. Let R be a 2-torsion free prime ring with a nontrivial idempotent and
i, j, k ∈ {1, 2}. The R satisfies Conditions (P1), (P2), (P3), and (P4), i.e.,

(P1) If aijxjk = 0 for all xjk ∈ Rjk, then aij = 0.
(P2) If xijajk = 0 for all xij ∈ Rij, then ajk = 0.
(P3) If aiixii + xiiaii = 0 for all xii ∈ Rii, then aii = 0.
(P4) If xijaxij = 0 for all xij ∈ Rij, then aji = 0.

Proof. (P1) and (P2) can be deduced easily from the fact that R is a prime ring.
(P3) It follows from Lemma 1.5 directly.
(P4) See Lemma 2 (i) in [3].

�

We complete this section by recalling the definition of standard operator algebras.
Suppose that X is a Banach space. Let B(X) denote the algebra of all bounded
linear operators on X, and F (X) denote the algebra of all finite rank operators
in B(X). A standard operator algebra is any subalgebra of B(X) which contains
F (X).

2. Additivity of Jordan derivations on rings

Throughout this section, we always assume that R is a ring with a nontrivial
idempotent e1 and satisfies

(P1) If aijxjk = 0 for all xjk ∈ Rjk, then aij = 0;
(P2) If xijajk = 0 for all xij ∈ Rij , then ajk = 0;
(P3) If aiixii + xiiaii = 0 for all xii ∈ Rii, then aii = 0.
We also assume that mapping δ : R→ R satisfies

δ(ab+ ba) = δ(a)b+ aδ(b) + δ(b)a+ bδ(a) for all a, b ∈ R.

Let’s begin with

Lemma 2.1. (1) δ(a11 + b12) = δ(a11) + δ(b12).
(2) δ(a11 + b21) = δ(a11) + δ(b21).
(3) δ(a22 + b12) = δ(a22) + δ(b12).
(4) δ(a22 + b21) = δ(a22) + δ(b21).
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Proof. We only prove (1). The rest of the proof goes similarly.
For any x22 ∈ R22, we compute

δ[(a11 + b12)x22 + x22(a11 + b12)]

= δ(a11 + b12)x22 + (a11 + b12)δ(x22) + δ(x22)(a11 + b12) + x22δ(a11 + b12).

On the other hand,

δ[(a11 + b12)x22 + x22(a11 + b12)]

= δ(b12x22)

= δ(a11x22 + x22a11) + δ(b12x22 + x22b12)

= δ(a11)x22 + a11δ(x22) + δ(x22)a11 + x22δ(a11)

+δ(b12)x22 + b12δ(x22) + δ(x22)b12 + x22δ(b12).

Comparing these two equalities we obtain

[δ(a11 + b12)− δ(a11)− δ(b12)]x22 + x22[δ(a11 + b12)− δ(a11)− δ(b12)] = 0.

This gives us

[δ(a11 + b12)− δ(a11)− δ(b12)]12x22 = 0,

x22[δ(a11 + b12)− δ(a11)− δ(b12)]21 = 0,

and

[δ(a11 + b12)− δ(a11)− δ(b12)]22x22 + x22[δ(a11 + b12)− δ(a11)− δ(b12)]22 = 0.

By Conditions (P1), (P2), and (P3), we have

[δ(a11 + b12)− δ(a11)− δ(b12)]12 = 0,

[δ(a11 + b12)− δ(a11)− δ(b12)]21 = 0,

[δ(a11 + b12)− δ(a11)− δ(b12)]22 = 0.

In order to complete the proof, we now show that [δ(a11 + b12) − δ(a11) −
δ(b12)]11 = 0.

For any x12 ∈ R12, note that

δ[(a11+b12)x12+x12(a11+b12)] = δ(a11x12) = δ(a11x12+x12a11)+δ(b12x12+x12b12).

Applying Equality (1.1) to both sides of this identity, one can deduce that

[δ(a11 + b12)− δ(a11)− δ(b12)]x12 + x12[δ(a11 + b12)− δ(a11)− δ(b12)] = 0.

Consequently,

[δ(a11 + b12)− δ(a11)− δ(b12)]11x12 = 0.

It follows from Condition (P1) that [δ(a11 + b12) − δ(a11) − δ(b12)]11 = 0, which
completes the proof.

�

Lemma 2.2. (1) δ(a12 + b12c22) = δ(a12) + δ(b12c22).
(2) δ(a21 + b22c21) = δ(a21) + δ(b22c21).
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Proof. (1) Using Lemma 2.1, we obtain

δ(a12 + b12c22)

= δ[(e1 + b12)(a12 + c22) + (a12 + c22)(e1 + b12)]

= δ(e1 + b12)(a12 + c22) + (e1 + b12)δ(a12 + c22)

+δ(a12 + c22)(e1 + b12) + (a12 + c22)δ(e1 + b12)

= [δ(e1) + δ(b12)](a12 + c22) + (e1 + b12)[δ(a12) + δ(c22)]

+[δ(a12) + δ(c22)](e1 + b12) + (a12 + c22)[δ(e1) + δ(b12)]

= δ(a12) + δ(b12c22).

(2) Note that

a21 + b22c21 = (e1 + c21)(a21 + b22) + (a21 + b22)(e1 + c21).

Now the proof goes similarly to that of (1). �

Lemma 2.3. (1) δ(a12 + b12) = δ(a12) + δ(b12).
(2) δ(a21 + b21) = δ(a21) + δ(b21).

Proof. We only prove (1). The proof of (2) is similar.
For any x22 ∈ R22, we calculate δ[(a12 + b12)x22 + x22(a12 + b12)] in two ways.
On one hand,

δ[(a12 + b12)x22 + x22(a12 + b12)]

= δ(a12 + b12)x22 + (a12 + b12)δ(x22) + δ(x22)(a12 + b12) + x22δ(a12 + b12).

On the other hand, by Lemma 2.2

δ[(a12 + b12)x22 + x22(a12 + b12)]

= δ(a12x22 + b12x22)

= δ(a12x22) + δ(b12x22)

= δ(a12x22 + x22a12) + δ(b12x22 + x22b12)

= δ(a12)x22 + a12δ(x22) + δ(x22)a12 + x22δ(a12)

δ(b12)x22 + b12δ(x22) + δ(x22)b12 + x22δ(b12).

These give us

[δ(a12 + b12)− δ(a12)− δ(b12)]x22 + x22[δ(a12 + b12)− δ(a12)− δ(b12)] = 0

for all x22 ∈ R22.
It follows that

[δ(a12 + b12)− δ(a12)− δ(b12)]12x22 = 0,

x22[δ(a12 + b12)− δ(a12)− δ(b12)]21 = 0,

and

[δ(a12 + b12)− δ(a12)− δ(b12)]22x22 + x22[δ(a12 + b12)− δ(a12)− δ(b12)]22 = 0.

By Conditions (P1), (P2), and (P3), we can deduce that

[δ(a12 + b12)− δ(a12)− δ(b12)]12 = 0,

[δ(a12 + b12)− δ(a12)− δ(b12)]21 = 0,

[δ(a12 + b12)− δ(a12)− δ(b12)]22 = 0.
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We now complete the proof by showing that

[δ(a12 + b12)− δ(a12)− δ(b12)]11 = 0.

To this end, for any x12 ∈ R12, we compute

δ(a12 + b12)x12 + (a12 + b12)δ(x12) + δ(x12)(a12 + b12) + x12δ(a12 + b12)

= δ[(a12 + b12)x12 + x12(a12 + b12)]

= 0

= δ(a12x12 + x12a12) + δ(b12x12 + x12b12)

= δ(a12)x12 + a12δ(x12) + δ(x12)a12 + x12δ(a12)

+δ(b12)x12 + b12δ(x12) + δ(x12)b12 + x12δ(b12).

This yields that

[δ(a12 + b12)− δ(a12)− δ(b12)]x12 + x12[δ(a12 + b12)− δ(a12)− δ(b12)] = 0.

Therefore, we have

[δ(a12 + b12)− δ(a12)− δ(b12)]11x12 = 0 for all x12 ∈ R12.

By Condition (P1) we can infer that [δ(a12 + b12)− δ(a12)− δ(b12)]11 = 0, which
completes the proof.

�

Lemma 2.4. (1) δ(a11 + b11) = δ(a11) + δ(b11).
(2) δ(a22 + b22) = δ(a22) + δ(b22).

Proof. We only prove (1). For any x22 ∈ R22, we have

δ(a11 + b11)x22 + (a11 + b11)δ(x22) + δ(x22)(a11 + b11) + x22δ(a11 + b11)

= δ[(a11 + b11)x22 + x22(a11 + b11)]

= 0

= δ(a11x22 + x22a11) + δ(b11x22 + x22b11)

= δ(a11)x22 + a11δ(x22) + δ(x22)a11 + x22δ(a11)

+δ(b11)x22 + b11δ(x22) + δ(x22)b11 + x22δ(b11).

This gives us

[δ(a11 + b11)− δ(a11)− δ(b11)]x22 + x22[δ(a11 + b11)− δ(a11)− δ(b11)] = 0,

which implies that

[δ(a11 + b11)− δ(a11)− δ(b11)]12 = 0,

[δ(a11 + b11)− δ(a11)− δ(b11)]21 = 0,

[δ(a11 + b11)− δ(a11)− δ(b11)]22 = 0.

Similarly, by considering (a11 + b11)x12 + x12(a11 + b11) and using Lemma 2.3 one
can deduce that [δ(a11 + b11)− δ(a11)− δ(b11)]11 = 0. �

Lemma 2.5. δ(a12 + b21) = δ(a12) + δ(b21).

Proof. From a12 + b21 = (a12 + b21)e1 + e1(a12 + b21) we have

δ(a12 + b21)

= δ(a12 + b21)e1 + (a12 + b21)δ(e1) + δ(e1)(a12 + b21) + e1δ(a12 + b21).
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Multiplying this equality from right by e1 we arrive at

0 = (a12 + b21)δ(e1)e1 + δ(e1)b21 + e1δ(a12 + b21)e1.

Similarly we can obtain

0 = a12δ(e1)e1 + e1δ(a12)e1,

0 = b21δ(e1)e1 + δ(e1)b21 + e1δ(b21)e1.

Comparing the above three equalities we see that

[δ(a12 + b21)− δ(a12)− δ(b21)]11 = e1[δ(a12 + b21)− δ(a12)− δ(b21)]e1 = 0.

Now, for any x12 ∈ R12, we have

δ(a12 + b21)x12 + (a12 + b21)δ(x12) + δ(x12)(a12 + b21) + x12δ(a12 + b21)

= δ[(a12 + b21)x12 + x12(a12 + b21)]

= δ(b21x12 + x12b21)

= δ(b21x12 + x12b21) + δ(a12x12 + x12a12)

= δ(b21)x12 + b21δ(x12) + δ(x12)b21 + x12δ(b21)

+δ(a12)x12 + a12δ(x12) + δ(x12)a12 + x12δ(a12),

which leads to

[δ(a12 + b21)− δ(a12)− δ(b21)]x12 + x12[δ(a12 + b21)− δ(a12)− δ(b21)] = 0.

Since [δ(a12 + b21)− δ(a12)− δ(b21)]11 = 0, we see that

[δ(a12 + b21)− δ(a12)− δ(b21)]21x12 = 0,

x12[δ(a12 + b21)− δ(a12)− δ(b21)]22 = 0.

It follows from Conditions (P1) and (P2) that

[δ(a12 + b21)− δ(a12)− δ(b21)]21 = [δ(a12 + b21)− δ(a12)− δ(b21)]22 = 0.

Similarly, by considering δ[(a12 + b21)x21 +x21(a12 + b21)] for all x21 ∈ R21, we can
get

[δ(a12 + b21)− δ(a12)− δ(b21)]x21 + x21[δ(a12 + b21)− δ(a12)− δ(b21)] = 0.

Consequently, [δ(a12 + b21)− δ(a12)− δ(b21)]12 = 0. �

Lemma 2.6. (1) δ(a11 + b12 + c21) = δ(a11) + δ(b12) + δ(c21).
(2) δ(a12 + b21 + c22) = δ(a12) + δ(b21) + δ(c22).

Proof. We only prove (1). For any x22 ∈ R22, we have

δ[(a11 + b12 + c21)x22 + x22(a11 + b12 + c21)]

= δ(a11 + b12 + c21)x22 + (a11 + b12 + c21)δ(x22)

+δ(x22)(a11 + b12 + c21) + x22δ(a11 + b12 + c21).
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On the other hand, by Lemma 2.5, we also have

δ[(a11 + b12 + c21)x22 + x22(a11 + b12 + c21)]

= δ(b12x22 + x22c21)

= δ(b12x22) + δ(x22c21)

= δ(a11x22 + x22a11) + δ(b12x22 + x22b12) + δ(c21x22 + x22c21)

= δ(a11)x22 + a11δ(x22) + δ(x22)a11 + x22δ(a11)

+δ(b12)x22 + b12δ(x22) + δ(x22)b12 + x22δ(b12)

+δ(c21)x22 + c21δ(x22) + δ(x22)c21 + x22δ(c21).

It follows that

[δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)]x22

+x22[δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)] = 0.

Then we can obtain that

[δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)]12 = 0,

[δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)]21 = 0,

[δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)]22 = 0.

From

δ[(a11 + b12 + c21)x12 + x12(a11 + b12 + c21)]

= δ[(a11 + c21)x12 + x12(a11 + c21)] + δ(b12x12 + x12b12)

and using Lemma 2.1, one can easily get

[δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)]x12

+x12[δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)] = 0.

It follows that [δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)]11x12 = 0, and so

[δ(a11 + b12 + c21)− δ(a11)− δ(b12)− δ(c21)]11 = 0.

�

Lemma 2.7. δ(a11 + b12 + c21 + d22) = δ(a11) + δ(b12) + δ(c21) + δ(d22).

Proof. For any x11 ∈ R11, by Lemma 2.6, we have

δ(a11 + b12 + c21 + d22)x11 + (a11 + b12 + c21 + d22)δ(x11)

+δ(x11)(a11 + b12 + c21 + d22) + x11δ(a11 + b12 + c21 + d22]

= δ[(a11 + b12 + c21 + d22)x11 + x11(a11 + b12 + c21 + d22)]

= δ(a11x11 + c21x11 + x11a11 + x11b12)

= δ(a11x11 + x11a11) + δ(x11b12) + δ(c21x11)

= δ(a11x11 + x11a11) + δ(b12x11 + b12x11)

+δ(c21x11 + x11c21) + δ(d22x11 + x11d22).

This gives us

[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)]x11

+x11[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)] = 0.
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We can infer that

[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)]11 = 0,

[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)]12 = 0,

[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)]21 = 0.

Similarly, one can get

[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)]22 = 0,

which completes the proof. �

Now we are ready to prove our first result.

Theorem 2.8. Let R be a ring with a nontrivial idempotent and satisfy
(P1) If aijxjk = 0 for all xjk ∈ Rjk, then aij = 0;
(P2) If xijajk = 0 for all xij ∈ Rij, then ajk = 0;
(P3) If aiixii + xiiaii = 0 for all xii ∈ Rii, then aii = 0,
for i, j, k ∈ {1, 2}. If a mapping δ : R→ R satisfies

δ(ab+ ba) = δ(a)b+ aδ(b) + δ(b)a+ bδ(a)

for all a, b ∈ R, then δ is additive.
In addition, if R is 2-torsion free, then δ is a Jordan derivation.

Proof. For any a, b ∈ R, we write a = a11+a12+a21+a22 and b = b11+b12+b21+b22.
Applying Lemmas 2.3 - 2.7, we have

δ(a+ b)

= δ(a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22)

= δ[(a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22)]

= δ(a11 + b11) + δ(a12 + b12) + δ(a21 + b21) + δ(a22 + b22)

= δ(a11) + δ(b11) + δ(a12) + δ(b12) + δ(a21) + δ(b21) + δ(a22) + δ(b22)

= δ(a11 + a12 + a21 + a22) + δ(b11 + b12 + b21 + b22)

= δ(a) + δ(b),

i. e., δ is additive.
In addition, if R is 2-torsion free, then for any a ∈ R, we have

2δ(a2) = δ(2a2) = δ(aa+ aa) = 2[δ(a)a+ aδ(a)].

Therefore, δ is a Jordan derivation. �

Applying Lemma 1.5 and the well-known result that every Jordan derivation on
a 2-torsion free semiprime ring is a derivation (see [1]), we have

Corollary 2.9. Let R be a 2-torsion free semiprime ring with a nontrivial idem-
potent satisfying

(C1) If aiixij = 0 for all xij ∈ Rij (i 6= j), then aii = 0;
(C2) If xjiaii = 0 for all xji ∈ Rji (i 6= j), then aii = 0.
If mapping δ : R→ R satisfies

δ(ab+ ba) = δ(a)b+ aδ(b) + δ(b)a+ bδ(a)

for all a, b ∈ R, then δ is additive. Moreover, δ is a derivation.

As a consequence of Lemma 1.6 we can easily have the following result.
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Corollary 2.10. Let R be a 2-torsion free prime ring containing a nontrivial idem-
potent and mapping δ : R→ R satisfy

δ(ab+ ba) = δ(a)b+ aδ(b) + δ(b)a+ bδ(a)

for all a, b ∈ R, then δ is additive. Moreover, δ is a derivation.

Since every standard operator algebra is prime, we can easily have

Corollary 2.11. Let A be a standard operator algebra in a Banach space X whose
dimension is greater than 1. Suppose that δ : A → A is a mapping satisfying

δ(AB +BA) = δ(A)B +Aδ(B) + δ(B)A+Bδ(A) for all A,B ∈ A,

then δ is additive. Moreover, δ is an additive derivation.

3. Additivity of Jordan triple derivations on rings

The aim of this section is to show that if a mapping δ from a ring R containing
a nontrivial idempotent into itself satisfies Equality (1.2) then δ is automatically
additive.

In what follows we shall assume that R is a ring with a nontrivial idempotent e1
satisfying

(P1′) If a11x12 = 0 for all x12 ∈ R12, then a11 = 0.
(P2′) If x12a22 = 0 for all x12 ∈ R12, then a22 = 0.
(P4) If xijaxij = 0 for all xij ∈ Rij (i, j ∈ {1, 2}), then aji = 0.
and δ : R→ R is a mapping with the property that

δ(aba) = δ(a)ba+ aδ(b)a+ abδ(a)

holds true for all a, b ∈ R.

Lemma 3.1. δ(a11 + b12 + c21 + d22) = δ(a11) + δ(b12) + δ(c21) + δ(d22).

Proof. For any xij ∈ R, i, j = 1, 2, on one hand, we have

δ[xij(a11 + b12 + c21 + d22)xij ]

= δ(xij)(a11 + b12 + c21 + d22)xij

+xijδ(a11 + b12 + c21 + d22)xij

+xij(a11 + b12 + c21 + d22)δ(xij).

On the other hand,

δ(xija11xij) = δ(xij)a11xij + xijδ(a11)xij + xija11δ(xij),

δ(xijb12xij) = δ(xij)b12xij + xijδ(b12)xij + xijb12δ(xij),

δ(xijc21xij) = δ(xij)c21xij + xijδ(c21)xij + xijc21δ(xij),

δ(xijd22xij) = δ(xij)d22xij + xijδ(d22)xij + xijd22δ(xij).

These imply that

δ[xij(a11 + b12 + c21 + d22)xij ]− δ(xija11xij)
−δ(xijb12xij)− δ(xijc21xij)− δ(xijd22xij)

= xij [δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)]xij .
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Note that for any i, j = 1, 2, we have

δ[xij(a11 + b12 + c21 + d22)xij ]− δ(xija11xij)
−δ(xijb12xij)− δ(xijc21xij)− δ(xijd22xij) = 0.

Then, for i, j = 1, 2, we get

xij [δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)]xij = 0

By Condition (P4), we see that

[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22)]ji = 0, i, j = 1, 2.

Equivalently,

δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22) = 0.

�

Lemma 3.2. (1) δ(a12 + b12c22) = δ(a12) + δ(b12c22).
(2) δ(a21 + b22c21) = δ(a21) + δ(b22c21).

Proof. (1) We first note that

e1 + a12 + b12c22 = (e1 + a12 + c22)(e1 + b12)(e1 + a12 + c22).

By applying Lemma 3.1, we have

δ(e1) + δ(a12 + b12c22)

= δ(e1 + a12 + b12c22)

= δ[(e1 + a12 + c22)(e1 + b12)(e1 + a12 + c22)]

= δ(e1 + a12 + c22)(e1 + b12)(e1 + a12 + c22)

+(e1 + a12 + c22)δ(e1 + b12)(e1 + a12 + c22)

+(e1 + a12 + c22)(e1 + b12)δ(e1 + a12 + c22)

= [δ(e1) + δ(a12) + δ(c22)](e1 + b12)(e1 + a12 + c22)

+(e1 + a12 + c22)[δ(e1) + δ(b12)](e1 + a12 + c22)

+(e1 + a12 + c22)(e1 + b12)[δ(e1) + δ(a12) + δ(c22)]

= [δ(e1) + δ(a12) + δ(c22)]e1(e1 + a12 + c22) + (e1 + a12 + c22)δ(e1)(e1 + a12 + c22)

+(e1 + a12 + c22)e1[δ(e1) + δ(a12) + δ(c22)] + [δ(e1) + δ(c22)]b12(e1 + c22)

+(e1 + c22)δ(b12)(e1 + c22) + (e1 + c22)b12[δ(e1) + δ(c22)]

+[δ(a12) + δ(c22)](e1 + b12)(a12 + c22) + (a12 + c22)[δ(e1) + δ(b12)](a12 + c22)

+(a12 + c22)(e1 + b12)[δ(a12) + δ(c22)] + [δ(e1) + δ(a12)]b12(e1 + a12)

+(e1 + a12)δ(b12)(e1 + a12) + (e1 + a12)b12[δ(e1) + δ(a12)]

= δ[(e1 + a12c22)e1(e1 + a12 + c22)] + δ[(e1 + c22)b12(e1 + c22)]

+δ[(a12 + c22)(e1 + b12)(a12 + c22)] + δ[(e1 + a12)b12(e1 + a12)]

= δ(e1 + a12) + δ(b12c22)

= δ(e1) + δ(a12) + δ(b12c22).

Notice that in the fifth equality we use the facts that

0 = δ(a12b12a12) = δ(a12)b12a12 + a12δ(b12)a12 + a12b12δ(a12)
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and

0 = δ[(a12 + c22)(e1 + b12)(a12 + c22)]

= δ(a12 + c22)(e1 + b12)(a12 + c22)

+(a12 + c22)δ(e1 + b12)(a12 + c22)

+(a12 + c22)(e1 + b12)δ(a12 + c22)

= [δ(a12) + δ(c22)](e1 + b12)(a12 + c22)

+(a12 + c22)[δ(e1) + δ(b12)](a12 + c22)

+(a12 + c22)(e1 + b12)[δ(a12) + δ(c22)].

(2) The proof is similar to that of (1), so we omit it.
�

Lemma 3.3. δ is additive on R12.

Proof. We need to show that

δ(a12 + b12) = δ(a12) + δ(b12)

holds true for any a12, b12 ∈ R12.
For any x1j ∈ R1j , j = 1, 2, from

δ[x1j(a12 + b12)x1j ] = 0 = δ(x1ja12x1j) + δ(x1jb12x1j)

we can get
x1j [δ(a12 + b12)− δ(a12)− δ(b12)]x1j = 0.

This implies that

[δ(a12 + b12)− δ(a12)− δ(b12)]11 = [δ(a12 + b12)− δ(a12)− δ(b12)]21 = 0.

Similarly, by considering

δ[x22(a12 + b12)x22] = 0 = δ(x22a12x22) + δ(x22b12x22)

for any x22 ∈ R22, we can conclude that [δ(a12 + b12)− δ(a12)− δ(b12)]22 = 0.
We now show that [δ(a12 + b12)− δ(a12)− δ(b12)]12 = 0. For any x21 ∈ R21, on

one hand,

δ[x21(a12 + b12)x21]

= δ(x21)(a12 + b12)x21 + x21δ(a12 + b12)x21 + x21(a12 + b12)δ(x21).

On the other hand, by Lemma 3.2 (2),

δ[x21(a12 + b12)x21]

= δ(x21a12x21 + x21b12x21)

= δ(x21a12x21) + δ(x21b12x21)

= δ(x21)a12x21 + x21δ(a12)x21 + x21a12δ(x21)

+δ(x21)b12x21 + x21δ(b12)x21 + x21b12δ(x21).

Then we can get

x21[δ(a12 + b12)− δ(a12)− δ(b12)]x21 = 0,

which leads to [δ(a12 + b12)− δ(a12)− δ(b12)]12 = 0. This completes the proof. �

Similarly, we have

Lemma 3.4. δ is additive on R21.
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Lemma 3.5. δ is additive on R11.

Proof. Let a11 and b11 be arbitrary elements of R11. By considering δ[xij(a11 +
b11)xij ], δ(xija11xij), and δ(xijb11xij) for the cases of i 6= j and i = j = 2 respec-
tively, one can easily get that

[δ(a11 + b11)− δ(a11)− δ(b11)]12 = 0,

[δ(a11 + b11)− δ(a11)− δ(b11)]21 = 0,

[δ(a11 + b11)− δ(a11)− δ(b11)]22 = 0.

In order to complete the proof, we need to show that

[δ(a11 + b11)− δ(a11)− δ(b11)]11 = 0.

We now claim that, for any r11 ∈ R11 and x12 ∈ R12,

(3.1) δ(r11x12) = δ(e1)r11x12 + e1δ(r11)x12 + r11δ(x12) + δ(x12)r11 + x12δ(r11)e1.

Indeed, by Lemma 3.1,

δ(r11) + δ(r11x12)

= δ(r11 + r11x12)

= δ[(e1 + x12)r11(e1 + x12)]

= δ(e1 + x12)r11(e1 + x12) + (e1 + x12)δ(r11)(e1 + x12) + (e1 + x12)r11δ(e1 + x12)

= δ(r11) + δ(e1)r11x12 + e1δ(r11)x12 + r11δ(x12) + δ(x12)r11 + x12δ(r11)e1.

Note that in the last equality we are using the facts that

δ(r11) = δ(e1r11e1) = δ(e1)r11e1 + e1δ(r11)e1 + e1r11δ(e1)

and

0 = δ(x12r11x12) = δ(x12)r11x12 + x12δ(r11)x12 + x12r11δ(x12).

Replacing r11 in Equation (3.1) with a11 + b11, a11, and b11 respectively, one can
get

δ[(a11 + b11)x12]

= δ(e1)(a11 + b11)x12 + e1δ(a11 + b11)x12 + (a11 + b11)δ(x12)

+δ(x12)(a11 + b11) + x12δ(a11 + b11)e1

and, also by Lemma 3.3,

δ[(a11 + b11)x12]

= δ(a11x12) + δ(b11x12)

= δ(e1)a11x12 + e1δ(a11)x12 + a11δ(x12) + δ(x12)a11 + x12δ(a11)e1

+δ(e1)b11x12 + e1δ(b11)x12 + b11δ(x12) + δ(x12)b11 + x12δ(b11)e1.

Comparing the above two equalities, we arrive at

[δ(a11 + b11)− δ(a11)− δ(b11)]x12 = 0.

It follows from Condition (P1′) that

[δ(a11 + b11)− δ(a11)− δ(b11)]11 = 0.

�

Lemma 3.6. δ is additive on R22.
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Proof. With the similar approach as in Lemma 3.5, one can get

[δ(a22 + b22)− δ(a22)− δ(b22)]11 = 0,

[δ(a22 + b22)− δ(a22)− δ(b22)]12 = 0,

[δ(a22 + b22)− δ(a22)− δ(b22)]21 = 0.

To complete the proof, it remains to show that

[δ(a22 + b22)− δ(a22)− δ(b22)]22 = 0.

For any x12 ∈ R12 and r22 ∈ R22, from

x12r22 = (e1 + r22)x12(e1 + r22)

one can check that

(3.2) δ(x12r22) = δ(e1)x12r22 + e1δ(x12)r22 + r22δ(x12)e1 + x12δ(r22).

Now, applying Equality (3.2) for r22 = a22 + b22, r22 = a22, and r22 = b22
respectively, we can get

x12[δ(a22 + b22)− δ(a22)− δ(b22)] = 0.

It follows from Condition (P2′) that [δ(a22 + b22) − δ(a22) − δ(b22)]22 = 0, which
completes the proof. �

Applying Lemma 3.1 and Lemmas 3.3 - 3.6, we can get the following result using
the same approach as in the proof of Theorem 2.8.

Theorem 3.7. Suppose R is a ring containing a nontrivial idempotent and satisfies
the following conditions:

(P1′) If a11x12 = 0 for all x12 ∈ R12, then a11 = 0.
(P2′) If x12a22 = 0 for all x12 ∈ R12, then a22 = 0.
(P4) If xijaxij = 0 for all xij ∈ Rij (i, j ∈ {1, 2}), then aji = 0.
If a mapping δ : R→ R satisfies

δ(aba) = δ(a)ba+ aδ(b) + abδ(b) for all a, b ∈ R,
then δ is additive, and hence a Jordan triple derivation.

Note that every Jordan triple derivation on a 2-torsion free semiprime ring is a
derivation (see [2]). By Lemma 1.5 we have

Corollary 3.8. Let R be a 2-torsion free semiprime ring containing a nontrivial
idempotent and satisfying

(P1′) If a11x12 = 0 for all x12 ∈ R12, then a11 = 0.
(P2′) If x12a22 = 0 for all x12 ∈ R12, then a22 = 0.
(C3) If xijaxij = 0 for all xij ∈ Rij (i 6= j), then aji = 0.
If δ : R→ R satisfies

δ(aba) = δ(a)ba+ aδ(b) + abδ(b) for all a, b ∈ R,
then δ is additive. Moreover, δ is a derivation.

In particular, applying Lemma 1.6, we get

Corollary 3.9. Let R be a 2-torsion prime ring containing a nontrivial idempotent.
If δ : R→ R satisfies

δ(aba) = δ(a)ba+ aδ(b) + abδ(b) for all a, b ∈ R,
then δ is additive. Moreover, δ is a derivation.
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Corollary 3.10. Let A be a standard operator algebra in X, where X is a Banach
space with dimX > 1. If a mapping δ : A → A satisfies

δ(ABA) = δ(A)BA+Aδ(B)A+ABδ(A) for all A,B ∈ A,
then δ is additive. Moreover, δ is an additive derivation.

Acknowledgement: The authors thank the referee who suggests generalizing
the original results to a larger class of rings.
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