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Thermal effects in dynamics of interfaces

A. Umantsev
Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona 86011-6010

(Received 3 October 2001; accepted 13 December)2001

Dynamical Ginzburg—Landau theory is applied to the study of thermal effects of motion of
interfaces that appear after different phase transitions. These effects stem from the existence of the
surface thermodynamic properties and temperature gradients in the interfacial transition region.
Thermal effects may be explained by the introduction of a new thermodynamic force exerted on the
interface, called here Gibbs—Duhem force, and the internal energy density flux through the interface.
The evolution equations for the interfacial motion are derived. For the experimental verification of
the thermal effects during continuous ordering the expression is derived for the amplitude of
temperature waves. @002 American Institute of Physic§DOI: 10.1063/1.1448485

I. INTRODUCTION early 1950s in the Russian literature when Fastsed “the

entropy version” to study relaxations in elastic medie

An interface comprises a layer of rapid variations of phase transitions Later Patashinsket al?® and Oxtoby
structural properties and is an important paradigm in sciencgy g1 4 independently applied such an equation to the problem

that helps understand many, seemingly unrelated, physicg} phase boundary motion. Halperin, Hohenberg®Mere
situations. Commonly interfaces appear whenever a thermgp first to propose on semi-intuitive grounds an ad hoc “en-

dynamic system undergoes some kind of a phase transitio&gy version” of the heat equation which they dubbed Model
and may be encountered in condensed matter, soft matt(ar In mid-1980s Caginalp, and Collins and Leviriatro-

(biology) and even cosmology. Interfaces.cons.n_tut.e StrUC'duced the “phase-field” model, which includes the heat
tural defects and, because of the global disequilibrium of a

defective system, a network of interfaces exhibits structuraje ?ua;uzn V;"tr} tconst]:amt d$n3|tyTﬁf hehat sofL'JrcI;gs e%ur?\l to the
coarsening or time evolution of the interface density. Thre atent heat of transtormation. The pnase-lield model Serves

distinctly different types of interfaces may be identified in (€ PuUrpose of being an effective numerical tool, at the same
different thermodynamic systemi&) homophase interfaces, M€ y|eld|ng.a reasonable apprQX|m.§t|on in the I|m|t|ng case
which separate two bulk pieces of the same phase and sarfié @ sharp interfacé.Although intuitively appealing, the
composition, e.g., grain boundaries, Bloghagneti¢ walls, phase field model is not thermodynamically consistent with
antiphase-domain boundaries, and Higgs field boundaries e dynamics of phase transitions, which precludes it from
cosmology; (2) isomorphous interfaces between phases ofevealing all physical effects that accompany the transitions.
the same crystalline structure but significantly different com-  The topic of thermodynamic consistency of the heat
position, e.g., polymeric interfaces, which occur commonlyequation with the phase transitions was recently a subject of
via spinodal decomposition(3) heterophase interfaces, extensive scrutiny and several atteniitsave been made to
which appear as a result of different first-orddiscontinu-  derive one. These attempts, however, suffer from one major
ous phase transitions, e.g., crystallization, and separatgroblem that not all energy contributions were accounted for
phases of different crystalline symmetry. In the present pam the internal energy functional of the whole system. That
per, however, we will not be concerned with specific modelgig not allow the authors to derive the full expression for the
systems or types of transitions. Rather, we will be concemeglaat source and capture all essential thermal effects in the

with the general features of interfacial dynamics and thermaéystem. As known, the heat equation may be derived from
effects that may manifest in completely unrelated situation:;the first or second law of thermodynamics utilizing the en-

For instance, for the first time heterophas_e and homophaseergy or entropy function and must lead to the same
interfaces are treated on the common basis.

- ! equation® A thermodynamically consistent derivation of the
Moving interfaces are exposed to different thermal ef- lized heat i tible with the fist and
fects that were studied mainly for first-order transitions, like9ENeralized heat equation compatibie wi € fist and sec-

melting—freezing, where emission or absorption of the latenP"d 1aws and dynamics of phase transitions was first pre-
heat associated with the transition renders a “feedback” reS€nted in Ref. 11 and will be briefly reviewed in Sec. Il A.
action on the rate and microstructure of the transformationSUch equations can be used not only for phase transitions but
In order to study thermal effects, naturally, we need a hea@lSO for any thermodynamic process where internal param-
equation compatible with the dynamics of phase transition§ters relax in the course of the latter.

that take place in the system. There is a whole bunch of Thermal effects may alter the course not only of first-
different models now “on the market” that describe such order transitions but of the continuous transitions as well,
situation. The history of application of the heat equation toespecially in systems with low thermal conductivity. Zia
thermodynamic systems with relaxation goes back to thet al? considered the dynamics of the interface between two
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symmetric phases using the framework of the so-calledlifferent systems are expressed as the conditions of optimi-
Model C2 Although being a right step in the right direction, zation of specified thermodynamic functions, e.g., Gibbs free
this work lacks any quantitative results on the part of inter-energyG, internal energyE, or entropyS with respect to
face kinetics except the morphological stability. Recently wevariations of this set of internal parameténg},

analyzed the influence of the internal energy excess on the

. ) . . SE 6G S

dynamics of the antiphase domain boundary in the frame- ¢=|—| =[(— —_Tl —= =0. (1)
work of the Onsager theory of linear resporid&Ve derived Sni)sy 1O/ 1p Ol gy

an evolution equation that takes into account the finite rate of 50 may argue that temperature and pressure is a better
energy transfer in the transition region and showed that th@hoice of independent variables than energy density and spe-
internal energy transport causes a drag effect and temperggic yolume because, regardless of the outer constraints of
ture hump in the transition region. Although the principal ynen or closed systems, conditions of equilibrium, together
result that the necessity to move energy together with thei:, Eq. (1), include constant temperature and pressure
interface results in slowing down of its motion was Obtainedthroughout, but not constant energy density or specific vol-

in the paper on the grounds of simple symmetry arguments, e These arguments determine our choiceToPj as the

some questions remained unanswered. For instance, Whatifﬁjependent variables and the Gibbs free endgggs the

the temp_erature distribution around the_ interface? What W”khermodynamic potential. At equilibrium the internal param-
happen if the energy transfer mechanigtiermal conduc-  gters relax to specific values which are functions of tempera-
tion) is turned off? _ _ ture and pressurey,E=Z(T,P), and can be found by re-
To answer these questions, motion of a homophasg,ing the proper condition of thermal equilibriuif).
boundary will be analyzed here in the framework of the dy'Entropy S, volumeV, and other thermodynamic functions

namical Ginzburg—Landau theory, which, arguably, is themay pe found with the help of the Legendre transformation,
most convenient way of addressing such problem. The para-

digm of the Landau theory of phase transitibassumes that . ( dG(T,P, 77i)) Ve ( JG(T,P, 77i))
P T

the Gibbs free energy in addition to temperature and pressure aT P .
v

is a continuous function of the long-range order parameters
with different transitions corresponding to different order pa-G(T,P,»;))=E—TS+PV. 2
rameters. In t_hl_s paper we shgll restrict (_)urselves with sys- In the framework of the Landau theory of phase
tems that exhibit nonconservative dynamics of the order pat—

7

rameter only. To wit, the conservative dynamics of spinodal ransitions® the internal parametefsy,} are associated with
VY- I¢ " Y P he symmetry changes and are usually called the order pa-
decomposition in solutions of small molecules and polymer

blends are not included in the consideration here. Therm rameters(OP). The concept of an order parameter helps de-

) . ) n h | lly stable state of matter hom n
effects in the latter were considered in Ref. 14. All other. € aphaseas a locally stable state o Er nomogeneous

f interf resented above will be treated her |rr11the order parameter. Different transitions may be laid out
;? Ses r?1m r? arcesr,“;:) esfe the ;no rﬁi | Gienzbe are L i; o the same framework if proper physical interpretations of
thzo(r:; on grounds ot the dynamica urg—tandaly, ey parameters are found. All examples from the Introduc-

The scope of the paper is as follows: In Sec. Il the iso tion may be described by a single scalar order parameter:

. . . ; ‘magnetization for ferromagnets, average angle of molecules
thermal dynamics of interfaces in systems without any con- g g g g

. . : he di i f the di for liqui | -
servative law will be reviewed. In Sec. Ill thermal effects of about the direction of the director for liquid crystals, order

) : . . . ing on sublattices for order—disorder transition, scalar Higgs
interfacial dynamics are considered and a local evolutio

: . . "tield in cosmology. That is why we restrict the present paper
equations are derived. In Secs. IV and V these equations a the case of a scalar O

applied to two different types of interfaces, homophase an In the framework of a Landau thedfithe free energy is

heterophase. In Sec. VI the main results are discussed and an.ontinuous function of OP and may be expanded in powers

S)E(Zfer('jmem to reveal thermal effects in new systems is SUS%t op compatible with the symmetries of initial and final
: phases,

= 1 2,1 3
II. ISOTHERMAL DYNAMICS OF INTERFACES G(T,P,7)=G(T,P,0+V{za(T,P)n"+ 3b(T,P) 7

A. Landau theory of phase transitions + ¢(T,P)p*+---}. ©)

Any theory of dynamic processes starts with the analysi¢ommonly, the temperature dependent coefficients of the ex-
of _the eqU|_I|br|um state in the system, specified by the conpansiona(T), b(T), ¢(T),... aretaken in the Landau form
ditions on its boundary, e.g., constant temperature and pregshere the first one is linearly proportional to temperature,

sure(open syster or adiabatic insulation from the environ- a(T)=a,(T—T,), andb, ¢ are temperature independent.
ment (closed system One has to choose the set of

independent variables and conjugate dependent thermodﬁ— Interfaces at equilibrium
namic functions that characterize such state of equilibrium.™ q
Away from equilibrium, in addition to temperatufg and Coexistence of two phases at equilibrium brings about a
pressureP, a thermodynamic system is characterized by antransition region between them, callediaterface The pres-

other set of internal parametefs;}, which is a measure of ence of interfaces makes the system essentially inhomoge-
disequilibrium in the system. Then, criteria of equilibria in neous even at equilibrium that is, there appear gradients of
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OP. Since an interface comprises the spatial variation of théhe OP variation through the interfacg,(x). Different types
OP, the Gibbs free energy of the entire system should bef interfaces with respect to their stability at different tem-

written in the functional form, peratures are considered in the Secs. IV and V.
As is known?®?! all properties of an interface at equi-
G:J’ gd°3x. (4) librium are completely determined by just one intensive

quantity, the surface tension surface energyr. The equi-
The free energy density becomes a function of the gradi- librium surface energy in a one-component medium is de-
ents of the thermodynamic variables as well as the variablefined as the excess Gibbs free energy of the system with an
themselves. There is a certain penalty on the inhomogeneousterface, per unit area of the interface, compared to that of
system in the form of the “gradient energy” contribution into the homogeneous bulk phase occupying the same volume.
the free energy. In this paper the gradient-energy contributiohe corresponding extensive quantity is proportional to the
is represented in the standard Ginzburg—Landau—Cahntetal area of the interface. Utilizing Eg#&), (8) for o, we

Hilliard form,6:17 obtaint”?2

A= + 1 2 + o N

g=9(T.P,n)+ 2x(Vn)s, 5 O.Ej {8(Te,Pe, 7)) — uhdx. 9)
where the gradient energy coefficientnay depend on tem- o
perature and pressure. Equations(5), (7), (9) yield another expression for the sur-

Thermodynamic equilibrium of the system under condi-face energy,
tions of constant temperature and pressure is described by

- 2
minimization of the Gibbs free energy, Ed.). For the func- o= J'+ K<%> du. (10)
tional (4), (5), the latter takes the form of the Euler— —= | du
Lagrange equation, To characterize an interfacial thickness we adopt the defini-
G  dg , tion introduced in Ref. 17,
—=——«kV°y=0. 6
on  dn 7 © = L] 1)
At constant temperature and pressure. @g.is known " maVy’

e.g., one-dimensional periodi¥, cylindrical, spherical’®  4cr0ss the interfacép]=¢. —¢_ . Then Eqs(5), (7), (10),
None of these, however, possess thermodynamic stability eX11) allow us to estimate the surface tension as

cept one-dimensional translation invariant solutions, whiche . ,,12/|, . It is also advantageous for our analysis to in-

represent flat interfaces. Using translation invariance(89. troduce the following surface quantfts,
may be integrated once to yield

+ o0
. k(dn\? FSEJ osdx, (12
9(Te,Pe,n)=9(Te,Pe.n)— 5| 7] =~ (7) -
2\ dx
where (Tg,Pg) are the equilibrium temperature and pres- 55:[g_3+_(,7_ ,7+)E ) (13)
sure, that is the temperature and pressure of phase coexist- [7]

ence, andu is the chemical potential, which may be found The quantityI's does not diverge and, in the spirit of
from the values of the free energy far away from the inter-Gibbs?° may be called the relative surface entropy with re-

face, spect to the OP.
#=9(Te,Pe,7,)=09(Te,Pe, 7). (8) .
Equation(8) is a continuum expression of the Gibbs phasec' Relaxation of an order parameter
rule. Here and below g.=¢p(X==*») and 7. Being away from equilibrium the thermodynamic system

=E(Tg,Pg) are the equilibrium bulk-phase OP values. Inrelaxes back to an equilibrium state where the OP is one of
Egs.(5), (7) and below the hatted quantities stand for non-the solutions of Eq(1). Hence,® is the driving force for the
local densities and are defined as the sum of the local an@P relaxation. Mandel'shtam and Leontovitch implemented
gradient contributions, while the quantities with are de- this idea in a seminal pagémwhere they studied relaxations
fined as the differences of the same contributions. An analand scattering of sound in liquidso phase transitiong* To
ogy with the classical mechanics may be brought to bgar: characterize relaxation in a nonequilibrium system in com-
is analogous to the negative of the Hamiltonian of the mepliance with the second law they assumed linear proportion
chanical system, the nonlocal free energy density—to théetween the rate of the relaxation parameter change and the
Lagrangian, and the total free energy—to the action. Therthermodynamic forced: 7« —(9G/dn)tp. Landau and
Eq. (6) is equivalent to the Lagrange equation, Ef)—to  Khalatnikov adopted this evolution equation later in their
the conservation of the mechanical energy witlbeing the  study of the absorption of sound in the vicinity of the
total energy. second-order transitiof?.

For the free energy3) to describe a phase transition it In heterogeneous medium the gradient-energy contribu-
ought to have a characteristic double-well form. Then®&y. tion is essential and the free energy is a functiddal (5).
may be solved to yield a typical hyperbolic tangent shape foil herefore, the local thermodynamic force is expressed as the
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HOI B-phase follows: d27(0)/du?=0. According to Egs(1), (6), 7(0)
oD corresponds to one of the equilibrium values of the @P:
Q- 7 n, =E(T,P).
~~ 4 The Laplacian operator can be conveniently expressed in
~o the new coordinates as follows:

c-phase 2 32 oK d L
N 0 — —_—
\" X og2 H2K(uu,w,t) -, (16)

N whereK is the mean curvature of the surfade= const>33*

K=r"Y(u,0,w,t)=Ko{1—uKy+u?K3+O(u3Kd)};
Ko=K(0p,W,t). (17

Y-phase \ In the curvilinear coordinates TDGLEL4) transforms

| into an ODE as followg?1-26-30

\
\ Kdz—ﬂ-i- 2KK+& d_n_—&g(T,n):

o B-phase \\ - du? y | du an

6 ” \ Introduction of the time-dependent curvilinear coordinates

has an advantage in that the evolution of the OP field may be
FIG. 1. Curvilinear coordinate systenu,¢,w) associated with a moving described now by the motion of one surfdde=0 in space
interface. The Gibbs—Duhem forég,, may be either parallel or antiparallel and time. This method is reminiscent of the method of char-
to the interfacial velocityv,, depending on the type of interface heteroge- L .
neous(HTI) or homogeneougHO). acteristics in hydrodynamics and theory of solfnand the
method of the optical path in the theory of light*2To solve
Eqg. (18) the method of averaging will be used in the next
section.

It is also possible, however much less trivial than at
gquilibrium, to determine the surface energy of an interface,
3vhich is allowed to move. The major difficulty comes from

the fact that the free energy densities of phases on opposite
sides of the interface are not supposed to be equal in disequi-
(14) librium. On the contrary, if presente.g., for a first-order
transition, the difference between these densities constitutes
Here d/d means the substantial derivative. The response cahe bulk driving force for the interface motion. Even if the
efficient y sets the relaxation time scatg=(ya) ~*. densities of the free energy are eq(lg., for a continuous
transition, the interface is not flat and is moving under in-
fluence of its own curvature and surface energy. To find the
D. Interfaces away from equilibrium nonequilibrium surface energy we suggest the following
procedure® Let us allow the interface to move durird
and calculate the change of the Gibbs free energy in the
system as a result of such motion, assuming temperature a

0. (18)

variational derivative of the free enerfgft-hand side of Eq.
(6)] instead of the partial one and the general equation of th
order parameter evolution takes the form, which is known
the time-dependent Ginzburg—Landau equatibbGLE),

oG

d7]_
on

at 7

TP

Consider a transition from one state to another when th
OP changes its bulk-phase value form to »_ very rapidly
inside a certain transition zone, called interface, while re
maining practically constant or changing very slowly outside

this zone, see Fig. 1. To describe motion of a curved inter-
f(ég)Td3x=dtf

d
Tk, 9

_ o u2?
Kvndt

constant. Using Eq<4), (6), we obtain

79
face away from equilibrium, instead of the Cartesian coordidG= (57
nate systenx=(x,y,z), we shall introduce newurvilinear T
time-dependent  coordinates {u=U(x,t),v=V(x,t),w  Transforming to the curvilinear coordinates,{,w) and us-
=W(x,t)} such that the OP is a function of one coordinateing Egs. (15), (16), (17), one can find that this change is
only: 7= 7(u).?6-3°0One may introduce the velocity of divided into two contributions,

motionV,(v,w,t) of the surfacdJ = const using the relation,

Uy d7] 2
U dG=—dt~[g]~f VndvdW+dt~j k| =—| du
_ 0 u_ \du
W+Vn|VU|—O. (15

In order to eliminate the arbitrariness of the new curvilinear : J' 2KoVpdodw. (20
coordinates associated with the transformation function o

=U(x,t), we assume that it obeys the eikonal equation evHereu_ andu, are the points far from the interface where
erywhere: FU)2=1332Hence, theU = const surfaces are d/du vanishes and is the area of the interface, Fig. 1. The
equidistant and the radius of curvature of these surfaces first term is proportional to the volume of the material swept
r=rq(v,w,t)+u, wherery(v,w,t) is the radius of curvature over by the interface; the coefficient of proportionality in
of the surfaceU=0, see Fig. 1. The latter is specified as front of this term is the bulk free-energy jump that represents
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the driving force for the interface motion. The second term isFinally, comparing Eq923) and(24) and using continuity of
proportional to the change of the area of the interface; the¢he variationssé(x) and §7(x) as functions of the position,
coefficient of proportionality of this term is the nonequilib- we arrive at the expression for the energy density variation,
rium surface energy.

The fact that the formula for the nonequilibrium surface Se=
energy coincides with that at equilibrium Ed.0), allows us

to introduce the surface entropyand internal energy as ) ] ]
follows: When temperature varies simultaneously with OP the nonlo-

cal energy density variation takes the form,

5E) 1) (25)
1)y 1 "

oe

) ol
only, " al,, (26)

If an equilibrium interface exists at a specific temperafige ) » )
only, as is the case for a first-order transition, the differentialiere C is the specific heat for constait and » per unit
tion in Eq.(21) should be understood in the sense of disequivolume of such material. .

librium. Otherwise, for instance in case of a continuous tran- ~ Substitution of Eq(26) into the first law of thermody-
sition, the surface entropy equals the relative surface namics for the incompressible medium yields the GHE
entropyls, Eq.(12). The equilibrium definition of the inter- Sought for

facial thickness, Eq(11), may also be extended into a non- T

equilibrium situation of a moving boundary. As one can see  C—=—-VJ;+Q(x,t), (27)
from Eqgs.(16), (17), (19), (20), the separation of the free dt

energy change into volumetric and interfacial contributionsyhereQ(x,t) is the density of instantaneous heat sources in
is possible only if the geometric number of the interface isthe energy representation,

small enough,

e=o+Ty. (21

X=T T de=CdT+

oE dzy de , |d7
Ge=2K,l,<1. (22) Q(X’t):_(%)wﬂ:_ o VT_KEV e
| | (29
IIl. THERMAL EFFECTS OF INTERFACIAL DYNAMICS dx
A. Generalized equation of heat transfer e K_Td_T'

5S
o7

dn

T at (29

57 (30

heat propagation in the system. In order to derive the gener- 5G
{5
¢ ' v, T o7 v, T
apply the first law of thermodynamics to a small volu#é
of heat given to the voluméV. As the compression is not
VvV, T
one has to find the expressions for the internal energy densi

As it has been concluded in the Introduction, the motionUtilizing Legendre transformation, Eq&), the heat source
of an interface is accompanied by energy redistribution and(x,t) may also be represented in the entropy form,
alized heat equatiofiGHE), which describes temperature Qx,t)=—
variations along with ongoing phase transition, one has to ’
of a heterogeneous nonequilibrium mediud&= 5q+ dw. The same variational procedure as in E¢&3)—(26)
Here ow is the work term andsq= — div J;dt is the amount MY be used to find the entropy variation in the voludive
the issue in this paper, we will assume our medium incom-  ds= TdT+
pressible. Hence, the work term vanishes. To finish the GHE

" téomparing Eqgs(30) and(26) and using Eq(29) we arrive
yarlatlo_n de gnd the hgat fluxd; that account for nonlocal at the expression of the first law in the form,
interactions in the medium.

The derivation of the formétis based on the calculation 1 156G
of a small variation of the internal energy functiofabf the ds= T 64— $(5_,7> d7. 31
whole system as a result of a smalhomogeneousgariation viT
of the OP &7, According to the second law of thermodynamicss

=6q/T. Application of the second law to our system vyields
5E:j (58)d3x. (23) @ constraint on the OP evolution equation,
Y
oG dzy

Now let us assume that the variatiagiy occurred in the (5_7’ VTESO- (32

volume 6V independentlfrom neighboring volumes of the
system and at constant temperature. Such variatipivan-  Constraint(32) was first derived in Ref. 11 and rederived
ishes everywhere outside of the considered volume. Thenater in Ref. 9. It manifests the Le Chatelier—Braun principle
using the definition of the variational derivati¥&we obtain  in the nonlocal nonequilibrium media and proves that the
TDGLE (14) is admissible, but not a unique, choice of the
SE= EJ' (57)d3x. (24) evolution equation for the OP if the response coefficignt
on Jov is positive. Another option for the OP would be to obey
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an evolution equation with memo?, 7=—['A(t  vectorJe, defined as followsd&dt=—divJe. As we are
—s)®(s)ds. In this case, conditiofB2) yields positive defi-  concerned with transition in incompressible meditdt
niteness of the kernd(t). =g/t and, in order to obtain an expression for the energy

The entropy representation, H@9), shows that the heat density flux, we should find the partial derivative &fwith
source consists of the entropy contribution, which may beespect to time,

either positive or negative depending on the direction of the

transition, and the dissipation which, due to the constraint  ga dT SEdn
(32), is proportional to the rate of the transition squared and, :CE + Sy ot +div
hence, always positive. Also it is possible to see from the

entropy representation, E@29), that there may be local Substituting the GHE in the energetic representation, Egs.

sinks of heat inside an overall positive heat source. (27), (28), into Eq. (35) we obtain the expression fdk in
The heat flux in a thermodynamic systdmdepends on o incompressible motionless medium

local values of temperature, its gradients and properties of

the medium. In Refs. 5 and 9 the following expression was an

adopted for the fluxA V(8S/ 6€). Another possibility would Je=J1—kgV Ut (36)
be to consider an integral expression for the heat flux in a

medium with memory® The heat flux vector, however, is This i It It sh that t for the heat flux. th
known to vanish withVT (Fourier’s Law. Thus expanding IS 1S anew result. i shows that except for the heat fiux, the
expression fodg contains the work flux associated with the

the fluxJ; in VT and disregarding terms of the order higher. . . . .
than the first one we obtain the regular expression for thénteracuons that appear in the system due to inhomogenieties

heat flux,J;= — AVT, where the thermal conductiviymay " 2 nonlocal nonequilibrium medium. The work flux entails

be a function ofT and 7. Then the GHE takes the form, the mho_mogeneous term in the hgat source_,(Ea)., gnd IS
responsible for the surface creation and dissipation effect,

analyzed in the next section. The work flux is analogous to
the intensity of a sound wave in a fluid witlireplacing the

dt
. _ . displacement of an element of fluid ang replacing the
GHE, EQgs.(28), (29), (33), is thermodynamically rigor- adiabatic bulk modulu®

ous and absolutely invariant with respect to the derivation

from the first or second laws of thermodynamics. The system

of coupling TDGLE (14) and GHE(33) describes creation

and subsequent evolution of an interface in a medium. Botl¢. Evolution equation for nonisothermal interfaces

equations, are of diffusion type and are characterized by dif- |, order to derive the evolution equation for a piece of

fusivities, the thermal diffusivityo=\/C for the latter and an interface we transform TDGLE4) and GHE(33) to the

the ordering diffusivitym= y« for the former. The ratio of time-dependent curvilinear coordinates,£,w), where 7
these diffusivitiesR is an important parameter, which deter- _ 7(u) and T=T(u,0,w). In the new curvilinear coordi-

mines different regimes of interfacial dynamics, nates TDGLE is represented by Ea8) and GHE, Eq(33),
transforms as follows:

an
kgV 7]5) . (35

dT
C—=V(\VT)+Q(xt). (33

R

3=

(34)
2 aT
As it has been explained in the Introduction, a few other CE =\ T (2NK+CV,) %JFQ
forms of the GHE have been suggested and derived. No one

of them, however, is complete in the sense of all reI"jlx";‘t'onl'hen we average these equations over the thickness of the

effects being accounted for. The “entropic version” of the interface. Proper averaging of the TDGLE should include a

GHE, suggested and used in Refs. 1-4, lacks the dissipati\(ﬁeight factor because at equilibriumf * dg/a7(Te, 7,)du

term proportional to the rate squared, second term in the:0 see Eq(7). Contrary to that, we do not need any weight
entropic representation of the heat source,(E).. The “en- ' !

. L 4 factors to average GHE37) because [ "Q(Tg,n,)du#0.
ergetic version” of GHE, su'g.ge.sted and used in Refs. 5 8, e multiply all the terms of Eq(18) by the weight factor
lacks the nonlocal nonequilibrium term, the last term in th

e . . .
energetic representation of the heat source, 28). The ﬁ;iyrl](;luthin(rje;g;c;%rate them over the interval.{,u.,). Ut
latter stems from the fact that the gradient energy was not '

accounted for in the total internal energy functional that is, ig ig

the nonlocal interactions in the system were assumed to be dg=-—d»+ —dT, (39
completely of entropic nature. It will be shown in the next I JT

section that this term is solely responsible for the surface

creation and dissipation effect in the motion of interfaces. 2nd taking into account thaty/du vanishes ati_ andu,
we obtain an equation for the motion of a phase separating

interface,

d
Tﬂ%d—Z)- 37

B. Energy density flux

A phase transition is accompanied by the transfer of the fUJr(ZKK-F ﬁ
u_ Y

d n 2 us JaT
- du=[g]+f 5—du, (39
internal energy, which is described by the energy density flux du u_ du

Downloaded 04 Aug 2004 to 203.197.62.148. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4258 J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 A. Umantsev

where$=s—1/2k(dp/du)? and ks= —dx/dT. Using Eq. representations of the temperature gradient when the tem-
(17) and the fact thatdz/du)? is a bell-like, even function perature gradient in the final phaseuat u_ is zero and we

of u, the left-hand side of Eq.39) may be represented as integrate this expression by parts,

follows: JT

u ~
_  — _akqu IO (T ekTU
ok, +O(13K3), a0 Mou " ® fufd“Q(“)e

whereo is the nonequilibrium surface energy, see H@$), _ uo uofu 3.3
(20), andk,, may be called the dynamic wave number of a T uiduQ(quT ufdu udeIQ(U)+O(|| k7).
curved interface,

(45
k,,=%+2Ko. (41) Herek; is the thermal wave number of a curved interface,
_ViC
The first term in the right-hand side of E(B9) is the k= Y +2Ko. (46)

free energy jump across the interface where temperaturE

changes together with OP. The physical nature of this term Xpansion(45) is in increasing powers oky and may be

may be elucidated by the introduction of the latent heat of aconS|dered an expansion into “powers of disequilibrium.” It

transition at temperatur®. 4041 can be truncated ifky<<1, which, in addition to condition
P ' (22), requires the generalized Peclet number to be small,
L(T)=[e]r. (429 Pe=I,V,C/N<1. (47
Such definition yields the relation for the specific heat jumpThen the temperature gradient in E45) can be calculated
across the interface, cf. E(R6), using the equilibrium structure of the Of(u) for the heat-
dL source density in the energy representation,
—==[C]r. (42b) dn| [ e d?n, 7
daT =v 2= = -
Q(u)=V, du|\7m), . el GuZ +2K, aull (48

Notice that the jump o andC in Egs.(42) must be taken at o ) )
constant temperature and the differentiation in Epb) is  Finally, substitution of Eq(45) into Eq. (44b) gives us the
notalong the equilibrium curve, as in Ref. 40. Then, the free®XPression for the Gibbs—Duhem force,

energy jump in a system where the latent heat is temperature N
independent can be expressed as follows: Fep= = J17 3 Vnd2=2KoJ3 . (49)
_ Te-To [T] The coefficients);’s are different moments of the entropy
lgl=L Te S [TI+C[T]=T-Inj 1+ 7 density and can be represented as follows:

(43

Substituting Eqs(40) and (43) into Eq. (39) we obtain an
evolution equation which relates different local characteris-

3= fu”+du<§—s+>u<u>,

tics of an interface, Jo= fu+du(§—s+)Ju duu (),
u_ u_
2
e~ T- 50)
ok, =L +Fgpt =C——+O([T3,13K3), u u dn\2 (
7 TE GD 2 _ [ ] 1 ™0 (44@ \]32 J’U +du(§_S+)fu d‘u( KE(d_'z +U(n)],
up oT U(uy=e—e_=Tg(8—s_).
Fep= fuf (5=s,)Z5du. (44D gypstitution of Eq.(49) into Eq. (449 yields the evolution

equation for the interface motion,
Equation(44) reveals the “driving forces” for the inter-

facial motion and is the principal I Te-T- 1 [T (o % c
principal result of the present paper. | b = =+ 2V +20K— —I.V2

According to Eq.(44a, an interface is driven not only by its Te 27T m A0 0 \zTEh

curvature 2K;,) and the free energy difference on both >

sides of the interfacd, (Tg—T_)/Tg, but also by another - —J3V, K. (51

force,Fgp, which appears as a consequence of the tempera- A

ture gradient inside the transition zone, see @4b). Such Equation(51) is a new result. According to E¢49), the

force may be called th&ibbs-Duhem forcebecause it may GD force is either parallel or antiparallel to the interfacial
be found from the Gibbs—Duhem relation. Notice that thevelocity and manifests in the second term proportional to the
driving forces in Eq.(44a have units of pressure because interfacial velocity in the evolution E¢51). Notice thato/m
they act on a unit area of the interface. is positive even fok<0, see Eq(10). Exact expressions for
To elucidate the physical meaning Bf;p we solve the the quantities];’s for different types of interfaces will be
stationary GHE37) (4T/dt=0) inside the interface using a found in the next sections. It is instructive, however, to elu-
method of asymptotic expansion. First, we obtain integrakidate the physical nature of the terms in Esfl) using only
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measurable quantities such as the latent heand the rela-
tive surface entropy's, Eq. (12). From Eqgs.(50) one can

see thatl;~J,~J41,. Then, if k=0, the entropic represen-

tation yields

leTEjuu+dU{S(U) —s,}-{s(u)—s_}

Ut S
=TEL7 du: 5s2+2%(7;.—m5s
(m-n)(m—m)}

[77|]2 ’

wheren=(7_+ 5,)/2. Using the bell-like shape @s from
Eqg. (12), we obtain

+[s]? (52

U 1 Uy
f du5s2~|—r§, f du( 7, —7)8s~0,
| u_

u

(53

C

Then, taking into account th@s(Tg)]=L/Tg, and substi-
tuting Egs.(53) into Eqg.(52), we obtain

fu+du(7"_77)(77'_7”)~ 1

(54

The type of transition effects the relative magnituded gf

Thermal effects in dynamics of interfaces 4259

The most important ramification of the energy density flux,
Eq. (56), is the presence of temperature gradients in the in-
terfacial transition region even when outside the interface
isothermal conditions are maintained. To find the equation
for the jumps of temperature and temperature-gradient across
a curved interface we average the stationary G3B)
(dT/9t=0) in the interval 0_,u,), use the same ideas as

in Eqg. (40) and obtain the heat balance equation,

(aT
A

Ju
Equation(57) differs from the regular heat-balan¢8tefar)
boundary condition in the term proportional to the curvature
of the interfaceK, and the velocity of its motiorv,,. An-
other way to look at the conditiof57) is to say that the heat
of transformation is less than the latent heat times the trans-
formed volume by the amount of the surface internal energy
times the area of the new interface. The latter constitutes the
surface creation and dissipation effeathich vanishes for a
flat or immobile interface when the interfacial area does not
vary. This effect is totally missing from the formulation in
Refs. 8, 9 becauseg=0 is assumed there.

+ke[T]|+V,(L—2eKo)=0. (57)

IV. HOMOPHASE INTERFACES

Homophase interface@Ol) appear after a continuous

and L, which in turn dramatically effects the magnitude of transition, when on both sides of the interface are different
J;, being negative for a typical first-order transition andvariants of the same phase. Antiphase domain boundaries,

positive for a continuous transition. Hence, see Hg9),

magnetic domain walls and cosmological walls are examples

(54), Fgp propels the motion of interfaces that appear afterof HOI's. The motion of HOI has been addressed in numer-
first order transitions serving as a driving force and opposesus studies, which go back to Lifshitz’'s seminal paffer,
motion of interfaces after continuous transitions manifestingvhere he conjectured a linear proportionality between the

a drag force. Substituting E¢p4) into Eq.(51) we arrive at
the linear approximation of the local evolution equation,

TE T_ g || 2 TE
TE —20’K0+ E_ L + —

L BATE A,

rZ|v,. (55

speed and curvature of a moving antiphase domain boundary.
Allen and Cahf’ used a continuum approach, similar to that
of the present paper, and, on the premise of the invariable
interfacial profile of the moving isothermal HOI in the direc-
tion of its motion, showed that a small piece of a gently

The beauty of this equation is that it is expressed onlycurved interface, conditiof22), will move with the velocity,
through measurable quantities and appropriate thermody,=—2mK,. Krzanowski and Alled? and Cahn and
namic parameters of a system and still is applicable to manlovick-Coheri® considered solute-drag effects at a migrat-

different situations.

D. Heat-balance equation

ing HOI. Umantset? considered the influence of the internal
energy excess on the dynamics of HOI in the framework of
the Onsager theory of linear response and showed that such
excess causes drag effect on the motion of HOI. The drag

The heat equatioi37) accounts for the thermal fluxes alters the effective interfacial mobility as follows:

across and along the interface. Consequently there is no con-
servation of energy along the characteristic ling,w) Vo= — .
=const, while such conservation exists in the case of a pla- 1+Dg

nar interface wher& =0. Absence of the conservation law |, the denotations of the present paper the drag coefficient is
does not aIIo_vv us to resol_ve the large-scale thermal probler|§bozm)(gn\(ﬂI . Equation(58) shows that the interfacial dy-
for a curved interface, which has been done for a planar ongamics is limited not only by the mobility of an interface but
in Ref. 41. To analyze the flow of energy through the inter-5 56 py the thermal conduction with the drag coefficibrt
face we need to calculate the energy density flux vector iMeasuring the relative role of these processes.
the interface. Equationd5), (36), (45), (48) yield A number of questions, however, remained unaddressed
dT do\2 by the simplified Onsager-type formulation in Ref. 13. For
Jg= —)\EJF KeVn rm instance, what is the temperature distribution around the in-
terface? What is the mechanism of thermal drag? What will
=V,(é—e_)+O(P€+Pe Gg. happen if the energy transfer mechanigmermal conduc-

2K. (58

(56)
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tion) is turned off? In order to answer these questions we
shall carry out here a continuum analysis of HOI motion. T

A. Continuum theory T

The free energyg for a system undergoing continuous
transition must be an even function of OP because states witt
+ » are indistinguishable. This makes the coefficienin
Eq. (3) vanish. In the present study we choose a regular
Landau form for the free energy, E

1 2
9=0.(T)+ 5807

-T. 1
—+—772). (59

Tc > ‘l:: —> transformation —

The homogeneous equilibrium sgf= = (Tg) for such free §

energy, Fig. 2a), consists of a totally disorderedstate with g

1n,=0 and two ordered variants of the same phgksand vy,

with 7%=+~ 7, where

Te—T¢
T=—. (60) 0 order parameter n
Te @

Above the critical temperaturé: (7>0) this set is reduced
to only one completely disordered and stabistate. Below
Tc (7<0) this set consist of homogeneous ordered phases
ng and n, with the disorderedr-state being unstable. Stable
heterogeneous isothermal solutions of &}, 7,(x), exist at
any Te<T. (7<0) and represent transition laye(slOl)
where OP changes fromy, to 7z over the distancd,
=2y—2«klagr. The surface energy of HOI iso
=2/-2kay™, T's equals the surface entropy=(—7)'?,
ande=Tgy becauser>o/Tg, see Eq(23). Then, see Egs.
(49), (54), asL=0, Fgp~—V, (drag force and Eq.(58) T
may be easily recovered from E¢p5). Notice that in the
framework of the continuum theory the drag coefficiént
does not show critical behavior ne&g, cf. Eq.(63) below.
This is a consequence of a linear temperature dependence ¢
the first term of the Landau expansi¢0).

In order to derive the continuum evolution equatiéi)
for HOI one has to calculate the coefficiedtss from Egs.
(50) for the free energy59),

m

temperature

v2a
31:_0, Jagr(1+ 7)(—1)%?, 0 order parameter 1 n

3T, (b)

agk 2a0k (61) FIG. 2. Homogeneous equilibrium states for different types of phase tran-
J,= 1+ 7)(—1), 33: 2. sitions. Thick lines stable states; thin solid lines, unstable stée€on-

Te 3T, tinuous transition, curved thin line, the temperature double 1a¥ém); (b)

_ . . . first-order transition.
Substitution of Eqs(61) into (51) yields the evolution equa- erorder franstion

tion for HOI motion in the form,

3 1+7/3 curved and thus slowly moving pieces of interface. The
Vit 2mKo+ Dvn{l_Z(PeJr 1+7 Ge))zo, 62 second-order dissipative correcti@(Pe+ Ge)V,, is small
) o due to the constraint®2), (47).
where the continuum-theory drag coefficiéntis To explain the drag effect we propose a borrow-return
1+ 7 CT, mechanism, see Fig. 3. Both variants on either side of the

(63 interface are characterized by the same amount of internal
energy density. Transformation inside the interface from one
There are two corrections to the interface evolution equatiowvariant to the other, however, requires crossing the internal
(62) due to the temperature gradients in the transition regionenergy barriemaximum), which corresponds to the disor-
The linear correctioDV,, does not vanish even for slightly dered phase withy,=0. So, a small volume of substance

D=2 =%,
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(1+D)(r3—r3)—2Dr* (ri,—ro)=4mt, (66)

wherer;, is the initial radius of a particle and* is the
threshold radius, below which the thermal effect changes
from drag to boost,

3/2 T

D
*_— [ —
= T(1+3 2005 D)h. (67)

o

The threshold radius*, however, is of the order of the
magnitude of the interfacial thickness and, obviously, the in-
terface approximation, which was used all along to derive
Eq. (62) is not valid forry<<r*.

For the total dissolution time of a minority-variant
spherical particle, Eq66) yields

. 2
o =" (14D)
: am

excess internal energy

1220 i 68
17D 1)’ (68)

order - parameter The first term in this expression represents the solution of
! I | this problem rendered by athermal LAC thedfy? The sec-
1 0 1 n ond term represents the thermal correction given by Onsager-
FIG. 3. Borrow-return mechanism. Internal energy of a substance as a fundyP€ macroscopic theofy. The third term is the continuum
tion of an order parameter. correction due to dissipative processes inside the interface
considered in the present treatment.

To verify the evolution equation for HOI motion, Eg.
must borrow a certain amount of energy proportionall®  (62), we shall use the method of numerical simulations to
from the neighboring volumes while moving uphill on the solve the above described problem of dissolution of a spheri-
internal energy diagram, Fig. 3, and return it later on theca| particle. This method allows one to study the dynamics of
downhill stage of the transformation. The borrow-returnjnterfacial motion without simplifying assumptions of scale
mechanism entails the internal energy flux vector, which Careparation, Eqg22), (47) and the averaging technique. The
be calculated from Eqg$56), (59), problem of dissolution was simulated by the coupled Egs.

Je=tay( 7= = 2= 1)V,. (64) (14),(33), (59 and the computations were conducted in the
scaled units with the spatial, and temporalr, scales,

This is a bell-like function of space, peaked @0 (7

=0). Such internal energy exchange requires a transport \/7 1

mechanism, which is served here by the heat conduction. L= a_o’ T’/:y_ao' (69)

Thus, the drag effect is due to the finite rate of such mecha- ) )

nism measured by the conductivity For a spherically symmetric problem all surfadéds- const
The energy flux through the interface is manifested in@'€ concentric spheres with the radii of curvaturer (t). At

the temperature waves of amplituffe], which can be cal- —*+ the B-phase remained for the entire computational

culated using Eq’57). Assuming thafd T/du]=0 and using ~ Period, while ar =0 y-phase existed up until the last stages

Eq. (58) to estimate the velocity of HOI, we arrive at the of dissolution, Fig. 1. For dissolutiok,,<<0 with different

expression for the amplitude of the temperature waves, dynamical regimes being controlled by the average tempera-
ture 7, Eq. (60), thermodynamic rati@, Eq. (63), and kinetic

[T]=— ratioR, Eq.(34). In Fig. 4 are shown the results of numerical
C(R—1+RD) solutions of Eqs(14), (33), (59) for different values of i, in

critical temperature dependence, which yields the criticallyvS the drag coefficierd (values off, 7 were kept constant
dependent temperature jump. while R changedl If LAC theory were correct the numerical

values of the function (#h t/rﬁ]) would have been equal to
unity. In fact, the normalized total dissolution times deviate
from unity significantly and are very close to {D), a
Different thermal effects of HOI motion may be eluci- correction required by the macroscopic Onsager-type theory
dated in a problem of dissolution of g&phase(minority-  of thermal effects, Eq(58). The numerical results, however,
variany spherical particle in g-phase(majority-varianj in-  are smaller than the Onsager correction, in accordance with
finite matrix. Such a situation occurs after quenchingthe formula(68), which takes into account dissipative effects
material to temperatures below the critical poiig. For a inside the interface. The proximity of the numerical dissolu-
spherical particl&ky=1/ry andV,=dry/dt, wherery(t) is  tion times to the continuum-theory values for differan
the particle’s radius. Then, E462) may be approximately and D [see Eq.(68) and thin lines in Fig. 4 proves the
solved as follows: validity of the local dynamic Eq(62).

2K m
"=~ 2Texy Kox(— )2 (69)

B. Dissolution of a spherical particle
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this experiment. The reason for such discrepancy is the as-

0 sumption[dT/du]=0, which is not completely true.
'E i C. Ideal thermal insulator
&

According to Eqs(58), (62) HOI slows down and stops
completely if \—0, implying that the simultaneous Egs.
(14), (33), (59) have an equilibrium non-one-dimensional so-
lution for an ideal thermal insulator that is, a substance with
N=0, if such a substance would exist. Rigorously speaking
Egs. (58) and (62) are not valid for vanishing. because
small thermal conductivity represents a singular perturbation
to the problem, e.g., conditiod?) is not fulfilled. Physically
this means that phase transition and temperature variation
occur on the same length scale and the separation of the
thermal and interfacial length scales is not possible. To ana-
lyze theoretically the HOI structure in an ideal insulator one
has to solve directly the equilibrium E¢p), which is known
) o 0 0 ' D 4'0 not to have stable isothermal inhomogeneous solutions oth-

ers than 1D. However, if the condition of invariable tempera-
FIG. 4. Scaled total dissolution times vs the drag coefficizrior different ture is relaxed, there appears a solution, which, to the second
initial radii of spherical particlesr;,=200A); r;,=150(<); r;,=100 order in Ge, takes the form,
(X); rin=50(+). Solid lines, theoretical results: 1, athermal LAC theory;

2, thermal macroscopic Onsager-type theory; thin lines, continuum theory, T(u)—Tg 7
Eq. (68), for different initial radii. o=———~—v2| Koz (87+ 777,2)( T+ 77|2),
T

Tc
Ui o
dn=n(u) = m(u)~=v2l Ko— (7+ 7).

w
(=
|

20 —

10 —

1

0 T | ' | ' T

As it has been explained in the previous subsection, the
energy flux manifests in the temperature waves of amplitud
[T], Eq.(65). To verify this prediction we have examined in
the numerical experiment the critical dependencéTdf on
the average temperature of the mediarithe crosses in Fig.

5 correspond to the numerical values[df]/Tc, the solid
line is the best-fit function T]/T¢=5.4x10 3x (—7)?
While the numerical critical exponent is very close to the
theoretically predicted exponent &fthe numerical prefactor
differs by 50% from the theoretical value of K20 3 for

E\rhis solution representstamperature double layefT in the
transition zone that causes small OP spikes

Vanishing of the velocity of motion of a curved HOI in
an ideal insulator is a striking result. Physically this means
that a network of HOI's will beat equilibriumwith an ideal
insulator. Thus it becomes crucial to check the stability of
these states with respect to dynamic fluctuations. Analytical
evaluation of stability is somewhat tedious task. The method
of numerical simulations has an advantage of finding only
stable solutions, as “fluctuations” are naturally present there
in the form of computational errors. In Fig. 6 are depicted
0.003 — spatial distributions of the temperature incremesfitsfor a
spherical particle with initial radius;,=100 in a system
I with #=0.1 and average temperature — 0.1, obtained nu-
Te merically for R=1 andR=0. In Fig. 7 the increments of
' temperatureST (a) and OPS7 (b) are plotted as functions of
the OP 7 after a very long computational time in a system
with R=0. The temperature double lay&T as a function of
the OPy is also shown in Fig. @), although greatly exag-
. ) gerated. Comparison of the simulation results with the theo-
+ retical expressiong70) in Fig. 7 provides a good match,

which convincingly demonstrates tlexistence and stability

0.001 — of a network of HOI's with the temperature double layer. In
a poorly conducting material this network will coarsen, the
coarsening process, however, will be totally controlled by the
heat transfer.

=

0.002 —

0.000 F—— V. HETEROPHASE INTERFACES

0.00 0.05 0.10 0.15 020 —T 0.25 Heterophase interfac€siTI) separate contiguous phases
FIG. 5. Amplitude of the temperature way&]/Tc as a function of the  Of the same medium, but different symmetries and appear as
distance from the critical point 7) for r;,=200, #=0.15,R=10. a result of a first orde(discontinuoug transition. The coef-
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0.004 — 0.004 —
oT E
g 1 3T 4
S
k=
0.002 —H o 0.002 —
2 -
S S
L+ |
) 2 é
2 VT k=
0.000 — ©0.000 —
=
=
S
2 i
g
2
-0.002 — -0.002 —
distance from the center
-0.004 T T T | -0.004 T T T T T T ]
0 50 100 150 I 200 -0.10 -0.05 0.00 0.05 0.10
(a) order parameter n
FIG. 6. The temperature double lay&fE as a function of the distance from
the center of a spherical particle with=100 in a system witt#=0.1 and 0.004 —
7=-0.1. Curve 1R=0; curve 2,R=1. Arrow points in the direction of
motion of layer 2. s
~  0.003
- 5
ficients of the Landau free energy may be chosen as follows: &
a(T)=ag(T—T,), andb, c as temperature independent. Iso- 3 1
thermal interface-dynamics effects in a system described by ¢

such free energy have been thoroughly investig&tastith 0.002 =

all the due respect to these works, unfortunately, we should
say that such free energy is too complicated for the purposes
of analytical study of thermal effects, with the main difficulty
coming from the temperature dependent latent heat of such
system. In one of the earlier pap&rsve have developed a
more convenient model represented by the following free
energy:

order paramet
|

0.001 —j

0.000

g _ ga(T, P) n %ao 772{h— %(h+ 2) 77+ 772}' (b) 0.10 0.05 order po::ameter 0.05 n 0.10
T-T FIG. 7. Increments of t‘emperatuﬁ' (a) and order paramete_?r; (b) for
h= ¢ ) (71 ri»=100 in a system W|tm=0.1_, 7=-0.1, ar_ldR=0 as fgnctlons of the
Te—T¢ order parameter, compared with the analytical expressiqiT®) (dashed
lines).
High and low symmetry phases correspondstg=0 and
ng=1 respective values of OP at all temperatures. These
phases are separated by an equilibrium state with the tem- L2 L2
perature dependent value of QR,=3h(T), which is un- J;=-0.633 nTor J2= —0-6453,.'.—,
stable aboveT., but gains thermodynamic stability below E E (72)
T., Fig. 2b). A first order transition fromx to 8 phase is ) L? ,al
accompanied by the release of the latent heat the same J3= _0'645n-|-_E +0.104 ”T_E'

amount at all temperatures. In accordance with the Gibbs .

phase rule, the thermodynamic equilibrium betwgeanda A Heat trapping

phases, see E8), is achieved at the specific temperature o reveal different thermal effects during first order tran-
Te=Tc/(1—ao/6L) only. For the free energy, Eq71), the  sjtions we shall consider a typical problem of growth of a
relative surface entropy vanishds=0; the thickness;  gpherical particle of thgs-phase from thex-phase matrix.
=4I, and the surface energy= t\/ka, are temperature in- The r-axis is directed fromg-phase toa-phase, Fig. 1, so
dependent and, hence, remain unchanged even away frotimat the center of curvature is in tiephase and the growth
equilibrium. The coefficients; of the Gibbs—Duhem force, of the particle corresponds 1@, being positive. Thermal
Eq. (50), are effects do not change significantly the critical nucleus radius,
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re~20Te/L(Tg—T_), unlessA—0, see Egs.(51) and smoothness. If the surface creation and dissipation effect is
(55). The rate of transformation, however, is different from not considered the absolute stability is achieved when the
the isothermal value. The most dramatic thermal effect, aghermal lengthl=«a/V, becomes equal to the capillary
can be seen from Eq¢51) and (55), is manifested in the lengthlc=oCTg/L%*" A consistent account of the surface
possibility to haveB-phase growing \(,,>0) even when its ~creation and dissipation effect shows that stabilization occurs
temperature after transformation is above the equilibriumvhenl; becomes equal th-(1—-L/CTg), that is, for larger
value (T_>Tg). This effect has been calldueat trapping  front speeds and initial hypercoolings. This means that the
and was studied in detail in Refs. 11, 3, 4, 41. The heasurface creation and dissipation effect works “against” the
trapping becomes possible when the Gibbs—Duhem forcégegular Gibbs—Thompson effect and retards stabilization.
Eq. (49), becomes large enough to propel an interface against

the negative bulk driving force. As one can see from Eq.

(55), for the heat trapping to occur the coefficient in front of V1. DISCUSSION

the term linear inV, must be negative and, d5=0, the In summary, we have presented theoretical description of

following criterion must be fulfilled: a few thermal effects in interface motion. These effects are
L2 A robust and conceivably independent of the method employed
U—TE>65. (73)  for the analysis. Equation&1) and (57) identify the local

interfacial variables/,,, Ko, T_, [T], [dT/du], and relate
Criterion (73) should be considered as the low limit on the them to the kinetic properties of the medium likem and
thickness of the interface or the upper limit on the rate ofthermodynamic interface quantities, &, ¢, I'g, |,. These
thermal conduction in the system for the heat trapping taequations are local in the sense that they are independent of
occur. During heat trapping the low symmetgphase the history of the process and may be used as boundary con-
grows at the expense of the high symmetrphase at a ditions in a global problem of structural evolution like that of
temperature above the equilibrium point. In case of crystaldendritic growth in crystallization or domain growth after
lization of water this would have meant the growth of super-continuous ordering.

heated ice from supercooled water. Condit{@8), however, There are two distinctly different sets of thermal effects
is not fulfilled for crystallization of ice but is quite feasible considered in this paper. One set originates from the exis-
for crystallization of other substances. tence of the Gibbs—Duhem thermodynamic force on the in-

Equations(51) and (55) also point at another situation terface, which is one of the principal results of the present
when the growing phase may be observed at a temperatufper. In the cases of continuous and discontinuous transi-
above equilibrium one that is, around regions in materialgions this force has opposite directions compared to the ve-
where the curvature is negativthe center of curvature is in |ocity of the interface, resulting in heat trapping effect for the
the a-phasg. The difference with the heat trapping effect is |atter transition and drag effect for the former one. Interest-
that the latter is possible even for flat interfaces. ingly to note that thermal drag during continuous transitions
exists despite of the vanishing latent heat, which causes ther-
mal effects during first order transitions, e.g., crystallization.
Thermal drag occurs because the conversion of one variant

Another example of a thermal effect can be revealed irof the same phase into another one is accompanied by the
the analysis of the heat balance before and after a HTiransmission of energy between neighboring pieces of a ma-
sweeps material during a first order transition. The amount oferial, which cannot occur infinitely fast. The Gibbs—Duhem
heat released is called the heat of transformation. It is contforce is antiparallel to the boundary velocity and has the
monly attributed to the product of the latent heat and thameaning of a drag force. As a result, HOI moves towards the
transformed volume. However, as BE&7) demonstrates, if center of its curvature with a speed which is lower than that
the moving interface is curved, the heat of transformatiorpredicted by the Lifshitz—Allen—Cahn thed?/*?> Such
will differ from the above described amount by the amountslowing down should be taken into account in experimental
of the surface internal energy times the surface area creategrification of the theory of coarsening of domain structures
or destroyed. This effect has been noticed by Wollkind inalbeit thermal effects do not change time exponents of the
Ref. 44 and used in the form of a boundary condition in ondatter.
of his later papers. Tiller discussed the surface creation or The present treatment convincingly demonstrated that
destruction effect in Ref. 45. The theoretical description ofthe thermal conductivity of a material is vital for the struc-
this effect in Ref. 45, however, was not appropriate becaustiral coarsening. If the thermal conductivity vanishes (
the author attributed it to the evolution equation, similar to=0), that is the energy-transfer mechanism is “turned off,”
Eq. (55), instead of the heat-balance condition, E&j). a curved homophase interface becomes stable. Stability of a

The rigorous derivation of the surface creation and disiminority-variant spherical particle in the bulk of a majority
sipation effect has been given by Roytburd and the presemariant is quite surprising and needs a physical explanation
author in Ref. 11, and used by Davis and the present authdnasmuch as a critical nucleus in the theory of the first order
in Ref. 46 to study the influence of this effect on the absolutdransitions is an equilibrium butnstablestate of the system.
stability of the solidification front during crystal growth from “Dissolution” of a minority-variant spherical particle is
a hypercooled melt, i.e., the condition when the front losexaused by Laplacian pressure from the curved interface
dendritic or cellular structure and restores completely it§ Gibbs—Thompson effect, see E§5)]. At the same time the

B. Surface creation and dissipation effect
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Gibbs—Duhem force generates an additiottiaérma) pres-
sure in the particle that neutralizes Laplacian pressure.

Another set of thermal effects stems from the existence
of the surface internal energy and necessity to carry it over
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