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LIE DERIVABLE MAPPINGS ON PRIME RINGS

WU JING AND FANGYAN LU

Abstract. LetR be a prime ring containing a nontrivial idempotent. Suppose
that a mapping δ : R → R satisfies

δ([a, b]) = [δ(a), b] + [a, δ(b)]

for all a, b ∈ R. Then there exists a za,b (depending on a and b) in its center

Z(R) such that

δ(a+ b) = δ(a) + δ(b) + za,b.

Moreover, if R is 2-torsion free additionally, then δ is of the form D+ τ , where
D is a derivation of R into its central closure T and τ is a mapping of R into

its extended centroid C such that τ(a+b) = τ(a)+τ(b)+za,b and τ([a, b]) = 0

for all a, b ∈ R.

1. Introduction and preliminaries

The motivations of this paper are the additivity of mappings on rings and char-
acterization of Lie derivations on prime rings.

In recent years, the additivity of mappings on rings has attracted the attentions of
many researchers. These mappings include multiplicative maps, (Jordan) derivable
mappings, Jordan (triple) mappings, Jordan elementary mappings, and so on (see
[1], [4]-[8], and references therein). For example, in his pioneer paper [8], Martindale
III obtained the following result.

Theorem 1.1. Let R be a ring containing a family {eα : α ∈ Λ} of idempotents
which satisfies

(1) xR = {0} implies x = 0.
(2) If eαRx = {0} for each α ∈ Λ, then x = 0 (and hence Rx = {0} implies

x = 0).
(3) For each α ∈ λ, eαxeαR(1− eα) = {0} implies eαxeα = 0.
Then any multiplicative bijective map from R onto an arbitrary ring R′ is addi-

tive.

In this paper, we want to continue the study of additivity of mappings on rings
by investigating Lie derivable mappings on prime rings. Recall that a mapping δ
from a ring R into itself is called a Lie derivable mapping if

δ([a, b]) = [δ(a), b] + [a, δ(b)]

holds true for all a, b ∈ R, where [a, b] = ab− ba is the usual Lie product of a and
b. Instead of being additive, we shall show that any Lie derivable mapping on any
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2 WU JING AND FANGYAN LU

prime ring R is nearly additive in the sense that for any a, b ∈ R there is a za,b
(depending on a and b) in the center of R such that δ(a+ b) = δ(a) + δ(b) + za,b.

Recall that an additive mapping from ring R into itself is called a Lie derivation
if

δ([a, b]) = [δ(a), b] + [a, δ(b)]

holds true for all a, b ∈ R.
There have been several results on the characterizations of Lie derivations on

rings. The first characterization on Lie derivations is due to Martindale III who
proved the following result in 1964.

Theorem 1.2. ([9]) Let L be a Lie derivation of a primitive ring R into itself,
where R contains a nontrivial idempotent and the characteristic of R is not 2 then
every Lie derivation L of R is of the form L = D + T , where D is an ordinary
derivation of R into a primitive ring R̄ containing R and T is an additive mapping
of R into the center of R̄ that maps commutators into zero.

In 1993, Brešar generalized the above characterization of Lie derivations on prim-
itive rings to those on prime rings. He obtained the following theorem.

Theorem 1.3. ([3]) Let R be a prime ring of characteristic not 2. Let d be a Lie
derivation of R. If R does not satisfy S4, then d is of the form δ + τ , where δ is a
derivation of R into its central closure and τ is an additive mapping of R into its
extended centroid sending commutators to zero.

As for characterizations on Lie derivable mappings on operator algebras, the
following result is proved in [7].

Theorem 1.4. Let X be a Banach space of dimension greater than 1 and δ be a
Lie derivable mapping of B(X) into itself. Then δ = D+ τ , where D is an additive
derivation and τ is a map from B(X) into FI vanishing at commutators.

In this paper, we shall also generalize the above result on Lie derivable mappings
to prime rings by showing that every Lie derivable mapping on prime rings can
be expressed as the sum of an ordinary derivation D and a central mapping τ
which vanishes at each commutator and is nearly additive in the sense that for any
a, b ∈ R there is a za,b (depending on a and b) in its center such that τ(a + b) =
τ(a) + τ(b) + za,b.

Before proceeding, we list some notations and results which will be used to
prove our results. Let R be an arbitrary ring with a nontrivial idempotent e. We
write e1 = e and e2 = 1 − e1. Note that R need not have identity element. Put
eiRej = Rij for any i, j = 1, 2. Then we have the Peirce decomposition of R
as R = R11 ⊕ R12 ⊕ R21 ⊕ R22. Throughout this paper, the notation aij will
denote an arbitrary element of Rij and any element a ∈ R can be expressed as
a = a11 + a12 + a21 + a22.

For a prime ring R (i.e., aRb = {0} implies a = 0 or b = 0), we denote the
maximal right ring of quotients and the two-sided right ring of quotients of R by
Qmr(R) and Qr(R), respectively. Note that R ⊆ Qr(R) ⊆ Qmr(R). The center
C = Z(Qr(R)) of Qr(R) is called the extended centroid of R. Note that the
extended centroid of any prime ring is a field. The subring RC of Qmr(R) is called
the central closure of R which is prime if R is prime. We denote the central closure
of R by T . More details can be found in Chapter 2 of [2].
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Lemma 1.5. ([2] Theorem 2.3.4) Let R be a prime ring, and a, b ∈ Qmr(R).
Suppose that axb = bxa for all x ∈ R. Then a and b are C-dependent.

We will make crucial use of the following lemmas.

Lemma 1.6. Let R be a prime ring with a nontrivial idempotent and i, j, k ∈ {1, 2}.
The center of R is denoted by Z(R).

(1) If aijxjk = 0 for all xjk ∈ Rjk, then aij = 0.
(2) If xijajk = 0 for all xij ∈ Rij, then ajk = 0.
(3) If a11x12 − x12a22 = 0 for all x12 ∈ R12, then a11 + a22 = z for some

z ∈ Z(R).
(4) If a22x21 − x21a11 = 0 for all x21 ∈ R21, then a11 + a22 = z for some

z ∈ Z(R).
(5) If a ∈ R and [a, x12] = [a, x22] = 0 for all x12 ∈ R12 and x22 ∈ R22, then

a ∈ Z(R).
(6) If a ∈ R and [a, e1] = [a, xij ] = 0 for all xij ∈ Rij (i 6= j), then a ∈ Z(R).

Proof. (1) and (2) are direct consequences of the primeness of R.
(3) For any x11 ∈ R11 and y12 ∈ R12, we have

a11(x11y12) = x11(y12a22) = x11a11y12.

It follows from (1) that

(1.1) a11x11 = x11a11.

Now for any x12 ∈ R12 and y22 ∈ R22,

(x12y22)a22 = (a11x12)y22 = x12a22y22.

By (2), we see that

(1.2) a22y22 = y22a22.

Let x21 ∈ R21 and y12 ∈ R12 be arbitrary. Applying Identity (1.2), we get

a22(x21y12) = x21(y12a22) = x21a11y12,

which, by (1), implies that

(1.3) a22x21 = x21a11.

Now, for any x ∈ R, using Identities (1.1), (1.2), and (1.3), we have

(a11 + a22)x = (a11 + a22)(x11 + x12 + x21 + x22)

= a11x11 + a11x12 + a22x21 + a22x22

= x11a11 + x12a22 + x21a11 + x22a22

= (x11 + x12 + x21 + x22)(a11 + a22)

= x(a11 + a22).

This gives us a11 + a22 = z ∈ Z(R).
(4) It is similar to (3).

(5) We write a =
∑2
i,j=1 aij , aij ∈ Rij . By [a, x22] = 0, we see that a12x22 =

x22a21 = 0 for all x22 ∈ R22. It follows from (1) and (2) that a12 = a21 = 0.
Now that [a, x12] = 0 implies a11x12 = x12a22. It follows from (3) that a11+a22 ∈

Z(R), which completes the proof.
(6) It is similar to (5). �
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Lemma 1.7. Let R be a prime ring with a nontrivial idempotent and i, j, k ∈ {1, 2}.
(1) If aij ∈ Tij and aijxjk = 0 for all xjk ∈ Rjk, then aij = 0.
(2) If ajk ∈ Tjk and xijajk = 0 for all xij ∈ Rij, then ajk = 0.

Proof. We only show (1).
Since aij ∈ Tij , there exist a′ij ∈ Rij and c ∈ C such that aij = a′ijc. Therefore,

aijxjk = 0 for all xjk ∈ Rjk is equivalent to a′ijcxek = 0 for all x ∈ R. It follows
that a′ijxek = 0 since C is a field. By the primeness of R, we see that a′ij = 0, and
so aij = 0.

�

2. Lie derivable mappings on prime rings

Throughout this section, we always assume that R is a prime ring containing a
nontrivial idempotent with center Z(R) and δ : R→ R is a Lie derivable mapping.

Lemma 2.1. δ(0) = 0.

Proof. It directly follows from δ(0) = δ([0, 0]). �

Lemma 2.2. For any aii ∈ Rii and bjk ∈ Rjk (i, j, k ∈ {1, 2} and j 6= k), there
exists a zaii,bjk ∈ Z(R) such that

δ(aii + bjk) = δ(aii) + δ(bjk) + zaii,bjk .

Proof. We only prove the case when i = j = 1 and k = 2. The rest of the proof
goes similarly.

For any x22 ∈ R22,

[δ(a11), x22] + [a11, δ(x22)] + [δ(b12), x22] + [b12, δ(x22)]

= δ([a11, x22]) + δ([b12, x22])

= δ(b12x22)

= δ([a11 + b12, x22])

= [δ(a11 + b12), x22] + [a11 + b12, δ(x22)].

This gives us

(2.1) [δ(a11 + b12)− δ(a11)− δ(b12), x22] = 0.

For any x12 ∈ R12, on one hand we have

δ([a11 + b12, x12]) = [δ(a11 + b12), x12] + [a11 + b12, δ(x12)].

On the other hand, we have

δ([a11 + b12, x12])

= δ(a11x12)

= δ([a11, x12]) + δ([b12, x12])

= [δ(a11), x12] + [a11, δ(x12)] + [δ(b12), x12] + [b12, δ(x12)].

So we have that

[δ(a11 + b12)− δ(a11)− δ(b12), x12] = 0.

By Lemma 1.6 (5), this together with (2.1) implies that δ(a11 + b12) − δ(a11) −
δ(b12) ∈ Z(R), as desired. �
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Lemma 2.3. (1) δ(a12 + b12) = δ(a12) + δ(b12).
(2) δ(a21 + b21) = δ(a21) + δ(b21).

Proof. We only show (1). One can get (2) in a similar manner.
Using Lemma 2.2, we have

δ(a12 + b12)

= δ([e1 − a12, e1 + b12])

= [δ(e1 − a12), e1 + b12] + [e1 − a12, δ(e1 + b12)]

= [δ(e1) + δ(−a12), e1 + b12] + [e1 − a12, δ(e1) + δ(b12)]

= δ([e1, e1]) + δ([−a12, e1]) + δ([e1, b12]) + δ([−a12, b12])

= δ(a12) + δ(b12),

which completes the proof. �

Lemma 2.4. For any aii, bii ∈ Rii (i ∈ {1, 2}), there exists a zaii,bii ∈ Z(R) such
that

δ(aii + bii) = δ(aii) + δ(bii) + zaii,bii .

Proof. Suppose first that i = 1. For any x22 ∈ R22, we have

[δ(a11), x22] + [a11, δ(x22)] + [δ(b11), x22] + [b11, δ(x22)]

= δ([a11, x22]) + δ([b11, x22])

= δ([a11 + b11, x22])

= [δ(a11 + b11), x22] + [a11 + b11, δ(x22)].

Then we can deduce that

(2.2) [δ(a11 + b11)− δ(a11)− δ(b11), x22] = 0.

For any x12 ∈ R12, we have

δ([a11 + b11, x12])

= δ(a11x12 + b11x12)

= δ(a11x12) + δ(b11x12)

= δ([a11, x12]) + δ([b11, x12]).

Note that in the second equality we are applying Lemma 2.3. Then we can obtain

[δ(a11 + b11)− δ(a11)− δ(b11), x12] = 0.

By Lemma 1.6 (5), this together with (2.2) implies that δ(a11 + b11) − δ(a11) −
δ(b11) ∈ Z(R)

In a similar fashion, one can prove the case of i = 2. �

Lemma 2.5. δ(a12 + b21) = δ(a12) + δ(b21).

Proof. Write δ(a12 + b21) − δ(a12) − δ(b21) =
∑2
i,j=1 uij , uij ∈ Rij . It suffices to

show that each uij is zero. To do this, observe that

δ(a12 + b21)

= δ([b21 − a12, e1])

= [δ(b21 − a12), e1] + [b21 − a12, δ(e1)]

= [δ(b21 − a12), e1] + δ([b21, e1])− [δ(b21), e1] + δ([−a12, e1])− [δ(−a12), e1]

= [δ(b21 − a12)− δ(b21)− δ(−a12), e1] + δ(b21) + δ(a12).
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This implies
2∑

i,j=1

uij = [δ(b21 − a12)− δ(b21)− δ(−a12), e1].

Then we can conclude that u11 = u22 = 0.
We now consider δ([a12 + b21, x12]) for any x12 ∈ R12. On one hand, we have

δ([a12 + b21, x12]) = [δ(a12 + b21), x12] + [a12 + b21, δ(x12)].

On the other hand, we also have

δ([a12 + b21, x12])

= δ([b21, x12])

= δ([a12, x12]) + δ([b21, x12])

= [δ(a12), x12] + [a12, δ(x12)] + [δ(b21), x12] + [b21, δ(x12)].

These give us [u12 + u21, x12] = 0 for all x12 ∈ R12, which implies that u21 = 0.
Similarly, by considering δ([a12+b21, x21]) for arbitrary x21 ∈ R21, we can obtain

that u12 = 0.
�

Lemma 2.6. For a11 ∈ R11 and b22 ∈ R22, there is a za11,b22 ∈ Z(R) such that

δ(a11 + b22) = δ(a11) + δ(b22) + za11,b22 .

Proof. First, we consider δ([a11 + b22, e1]) in two ways:

δ([a11 + b22, e1]) = [δ(a11 + b22), e1] + [a11 + b22, δ(e1)]

and

δ([a11 + b22, e1])

= 0

= δ([a11, e1]) + δ([b22, e1])

= [δ(a11), e1] + [a11, δ(e1)] + [δ(b22), e1] + [b22, δ(e1)].

Consequently,

(2.3) [δ(a11 + b22)− δ(a11)− δ(b22), e1] = 0.

Next, we consider δ([a11 + b22, x12]) for any x12 ∈ R12. By Lemma 2.3, we have

δ([a11 + b22, x12])

= δ(a11x12 − x12b22)

= δ(a11x12) + δ(−x12b22)

= δ([a11, x12]) + δ([b22, x12]),

which, together with δ([a11 + b22, x12]) = [δ(a11 + b22), x12] + [a11 + b22, δ(x12)],
gives us

[δ(a11 + b22)− δ(a11)− δ(b22), x12] = 0.

By Lemma 1.6 (6), this along with (2.3) implies that δ(a11 +b22)−δ(a11)−δ(b22) ∈
Z(R). �

Lemma 2.7. For any a11 ∈ R11, b21 ∈ R21, and c22 ∈ R22 there exists a
za11,b21,c22 ∈ Z(R) such that

δ(a11 + b21 + c22) = δ(a11) + δ(b21) + δ(c22) + za11,b21,c22 .
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Proof. With similar approach as in the proof of Lemma 2.6, one can get

(2.4) [δ(a11 + b21 + c22)− δ(a11)− δ(b21)− δ(c22), e1] = 0.

For arbitrary x21 ∈ R12, we compute

[δ(a11 + b21 + c22), x21] + [a11 + b21 + c22, δ(x21)]

= δ([a11 + b21 + c22, x21])

= δ([a11 + c22, x21]) + δ([b21, x21])

= [δ(a11 + c22), x21] + [a11 + c22, δ(x21)] + [δ(b21), x21] + [b21, δ(x21)]

= [δ(a11) + δ(c22), x21] + [a11 + c22, δ(x21)] + [δ(b21), x21] + [b21, δ(x21)].

Note that in the last equality we are applying Lemma 2.6. Then we can infer that

[δ(a11 + b21 + c22)− δ(a11)− δ(b21)− δ(c22), x21] = 0.

By Lemma 1.6 (6), this together with (2.4) implies that δ(a11 +b21 +c22)−δ(a11)−
δ(b21)− δ(c22) ∈ Z(R), which completes the proof.

�

Lemma 2.8. For any a11 ∈ R11, b12 ∈ R12, c21 ∈ R21, and d22 ∈ R22, there exists
a za11,b12,c21,d22 ∈ Z(R) such that

δ(a11 + b12 + c21 + d22) = δ(a11) + δ(b12) + δ(c21) + δ(d22) + za11,b12,c21,d22 .

Proof. From

δ([a11 + b12 + c21 + d22, e1])

= δ(−b12 + c21)

= δ(−b12) + δ(c21)

= δ([a11, e1]) + δ([b12, e1]) + δ([c21, e1]) + δ([d22, e1]),

one can easily get

[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22), e1] = 0.

We now consider δ([a11 + b12 + c21 + d22, x12]) for any x12 ∈ R12. Using Lemma
2.7 we obtain

δ([a11 + b12 + c21 + d22, x12])

= δ([a11 + c21 + d22, x12]) + δ([b12, x12])

= δ([a11, x12]) + δ([b12, x12]) + δ([c21, x12]) + δ([d22, x12]).

This leads to

[δ(a11 + b12 + c21 + d22)− δ(a11)− δ(b12)− δ(c21)− δ(d22), x12] = 0.

Thus, it follows from Lemma 1.6 (6) that δ(a11 + b12 + c21 +d22)− δ(a11)− δ(b12)−
δ(c21)− δ(d22) ∈ Z(R). The proof is complete. �

Theorem 2.9. Let R be a prime ring containing a nontrivial idempotent. Suppose
that mapping δ : R→ R satisfies

δ([a, b]) = [δ(a), b] + [a, δ(b)]

for all a, b ∈ R. Then there exists a za,b (depending on a and b) in Z(R), the center
of R, such that

δ(a+ b) = δ(a) + δ(b) + za,b.
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Proof. For any a, b ∈ R, we write a = a11+a12+a21+a22 and b = b11+b12+b21+b22.
By Lemma 2.8, there exists z1 ∈ Z(R) such that

δ([(a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22)])

= δ(a11 + b11) + δ(a12 + b12) + δ(a21 + b21) + δ(a22 + b22) + z1.

It follows from Lemma 2.4 that there exist z2, z3 ∈ Z(R) such that

δ(a11 + b11) = δ(a11) + δ(b11) + z2,

δ(a22 + b22) = δ(a22) + δ(b22) + z3.

We also have, by Lemma 2.8,

δ(a) = δ(a11 + a12 + a21 + a22) = δ(a11) + δ(a12) + δ(a21) + δ(a22) + z4,

δ(b) = δ(b11 + b12 + b21 + b22) = δ(b11) + δ(b12) + δ(b21) + δ(b22) + z5,

for some z4, z5 ∈ Z(R).
Now, we obtain

δ(a+ b)

= δ([(a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22)])

= δ(a11 + b11) + δ(a12 + b12) + δ(a21 + b21) + δ(a22 + b22) + z1

= δ(a11) + δ(b11) + z2 + δ(a12) + δ(b12) + δ(a21) + δ(b21) + δ(a22) + δ(b22) + z3 + z1

= δ(a)− z4 + z2 + δ(b)− z5 + z3 + z1

= δ(a) + δ(b) + (z1 + z2 + z3 − z4 − z5).

We write za,b = z1 + z2 + z3 − z4 − z5 in the above equality, then we arrive at

δ(a+ b) = δ(a) + δ(b) + za,b,

as desired. �

We now begin to characterize Lie derivable mappings on prime rings as a sum
of a derivation and a central mapping vanishing at commutators. We also want to
mention that in the rest of this paper we shall follow the line of [9]. Some proofs
are just modification of their counterparts in [9]. For the sake of completeness, we
give the proofs here.

Lemma 2.10. δ(e1) = [e1, s] + z, for some s ∈ R and z ∈ Z(R).

Proof. For any x12 ∈ R12, we have

δ(x12) = δ([e1, x12]) = δ(e1)x12 − x12δ(e1) + e1δ(x12)− δ(x12)e1.

Multiplying this equation by e1 from the left and by e2 from the right, we obtain

e1δ(e1)x12 − x12δ(e1)e2 = 0.

Equivalently, e1δ(e1)e1xe2 − e1xe2δ(e1)e2 = 0. It follows from Lemma 1.6 (3) that
e1δ(e1)e1 + e2δ(e1)e2 = z ∈ Z(R). Hence, δ(e1) = (e1δ(e1)e2 + e2δ(e1)e1) + z.
Letting s = e1δ(e1)e2 − e2δ(e1)e1, we get δ(e1) = [e1, s] + z.

�

Let ads : R → R denote the inner derivation induced by s, that is, ads(x) =
xs − sx for all x ∈ R. We also let ∆ = δ − ads. Then one can easily verify the
following lemma.
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Lemma 2.11. (1) ∆ is a Lie derivable mappings, i. e.,

∆([a, b]) = [∆(a), b] + [a,∆(b)] for all a, b ∈ R.
(2) ∆(a+ b) = ∆(a) + ∆(b) + za,b for some za,b ∈ Z(R).
(3) ∆ is additive on Rij for i 6= j.
(4) ∆(e1) ∈ Z(R).

Moreover, we also have

Lemma 2.12. ∆(Rij) ⊆ Rij for i 6= j.

Proof. We only show that ∆(R21) ⊆ R21. Let x21 ∈ R21 and write ∆(x21) =∑2
i,j=1 uij , uij ∈ Rij . Then

2∑
i,j=1

uij = ∆(x21) = ∆([x21, e1])

= [∆(x21), e1] + [x21,∆(e1)]

= [∆(x21), e1] = −u12 + u21.

This implies that u11 = u12 = u22 = 0, and so ∆(x21) ∈ R21. �

Lemma 2.13. ∆(Rii) ⊆ Tii + C.

Proof. Let a11 ∈ R11 and ∆(a11) =
∑2
i,j=1 uij , uij ∈ Rij . Then

0 = ∆([e1, a11]) = [∆(e1), a11] + [e1,∆(a11)] = [e1,∆(a11)] = u12 − u21.
This yields that u12 = u21 = 0 and ∆(a11) ∈ R11+R22. Similarly, for any b22 ∈ R22,
∆(b22) ∈ R11 +R22.

Suppose that ∆(a11) = u11 + u22 and ∆(b22) = v11 + v22. Then

0 = ∆([a11, b22]) = [∆(a11), b22] + [a11,∆(b22)] = [u22, b22] + [a11, v11],

which implies that [u22, b22] = [a11, v11] = 0.
Since [u22, b22] = 0 for all b22 ∈ R22, we have u22xe2 = e2xu22 for any x ∈ R.

Note that both U22 and e2 are elements of Qmr(R). By Lemma 1.5, u22 = e2c for
some c ∈ C. Thus

∆(a11) = u11 + u22 = u11 + e2c = u11 + (1− e1)c = (u11 − e1c) + c ∈ T11 + C.

One can get ∆(R22) ⊆ T22 + C in the same fashion. �

Now we can conclude that for each i = 1, 2, there exists a mapping fi : Rii → C
such that

∆(aii)− fi(aii) ∈ Rii.
Note that fi is well defined. Indeed, suppose that fi(aii) = c1 ∈ C and fi(aii) =
c2 ∈ C. Then we have ∆(aii) − c1 ∈ Rii and ∆(aii) − c2 ∈ Rii. It follows that
c2 − c1 = (∆(aii)− c1)− (∆(aii)− c2) ∈ Tii ∩ C = {0}. So c1 = c2.

Let’s define a mapping D : R→ T by

D(a) = D(

2∑
i,j=1

aij) =

2∑
i,j=1

∆(aij)− f1(a11)− f2(a22)

for all a ∈ R. A mapping τ : R→ C is then defined by

τ(a) = ∆(a)−D(a) for all a ∈ R.
We can verify that D has the following properties.
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Lemma 2.14. (1) D(Rij) ⊆ Rij (i 6= j).
(2) D(Rii) ⊆ Tii (i = 1, 2).
(3) D(aij) = ∆(aij) (i 6= j).
(4) D(

∑
aij) =

∑
D(aij).

(5) D is additive on Rij (i 6= j).

Lemma 2.15. Let a, b ∈ R and za,b ∈ Z(R) such that ∆(a+b) = ∆(a)+∆(b)+za,b.
Then

(1) τ(a+ b) = τ(a) + τ(b) + za,b.
(2) D(a+ b) = D(a) +D(b).

Proof. (1) It suffices to show that for any aii, bii ∈ Rii, i = 1, 2, there is a zaii,bii ∈
Rii such that τ(aii + bii) = τ(aii) + τ(bii) + zaii,bii .

Note that ∆ also satisfies Lemma 2.4. That is, for aii, bii ∈ Rii, there is a
zaii,bii ∈ Rii such that ∆(aii + bii) = ∆(aii) + ∆(bii) + zaii,bii . Now, we have

τ(aii + bii)− τ(aii)− τ(bii)− zaii,bii
= ∆(aii + bii)−D(aii + bii)−∆(aii) +D(aii)−∆(bii) +D(bii)− zaii,bii
= D(aii) +D(bii)−D(aii + bii) ∈ Tii ∩ C = {0}.

(2) It follows directly from (1). �

In what follows, we shall assume that R is 2-torsion free additionally.

Lemma 2.16. D(aijxaij) = D(aij)xaij + aijD(x)aij + aijxD(aij) holds true for
all aij ∈ Rij(i 6= j) and x ∈ R.

Proof. Observe that 2aijxaij = [[aij , x], aij ]. Then

2D(aijxaij) = D(2aijxaij) = ∆(2aijxaij) = ∆([[aij , x], aij ])

= [[∆(aij), x], aij ] + [[aij ,∆(x)], aij ] + [[aij , x],∆(aij)]

= [[D(aij), x], aij ] + [[aij , D(x) + τ(x)], aij ] + [[aij , x], D(aij)]

= [[D(aij), x], aij ] + [[aij , D(x)], aij ] + [[aij , x], D(aij)]

= 2[D(aij)xaij + aijD(x)aij + aijxD(aij)].

It follows that D(aijxaij) = D(aij)xaij + aijD(x)aij + aijxD(aij) since R is 2-
torsion free. �

Lemma 2.17. For any aii ∈ Rii and bjk ∈ Rjk (j 6= k),
(1) D(aiibjk) = D(aii)bjk + aiiD(bjk).
(2) D(bjkaii) = D(bjk)aii + bjkD(aii).

Proof. (1) If i = j, let aii ∈ Rii and bik ∈ Rik (i 6= k). We have

D(aiibik) = ∆(aiibik) = ∆[aii, bik]

= [∆(aii), bik] + [aii,∆(bik)]

= [D(aii) + τ(aii), bik] + [aii, D(bik)]

= [D(aii), bik] + [aii, D(bik)]

= D(aii)bik + aiiD(bik).

If i 6= j, let aii ∈ Rii and bji ∈ Rji. We have

D(aiibji) = 0 = D(aii)bji + aiiD(bji).

In the similar fashion one can get (2). �
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Lemma 2.18. For any aii ∈ Rii and bjj ∈ Rjj, D(aiibjj) = D(aii)bjj + aiiD(bjj).

Proof. If i = j, let aii, bii ∈ Rii, and xik ∈ Rik (i 6= k). Then, using Lemma 2.17
three times, we have

D(aiibii)xik = D(aiibiixik)− aiibiiD(xik)

= D(aii)biixik + aiiD(biixik)− aiibiiD(xik)

= D(aii)biixik + aiiD(bii)xik + aiibiiD(xik)− aiibiiD(xik)

= [D(aii)bii + aiiD(bii)]xik.

This leads to [D(aiibii)−D(aii)bii − aiiD(bii)]xik = 0 for all xik ∈ Rik. Applying
Lemma 1.7, we have D(aiibii) = D(aii)bii + aiiD(bii).

If i 6= j, let aii ∈ Rii and bjj ∈ Rjj . Then

D(aiibjj) = 0 = D(aii)bjj + aiiD(bjj).

�

Lemma 2.19. D is an ordinary derivation of R into T .

Proof. In view of Lemmas 2.17 and 2.18, we only need to show that D(aijbkl) =
D(aij)bkl + aijD(bkl) for any aij ∈ Rij and bkl ∈ Rkl (i 6= j, k 6= l).

We assume first that j = k, then l = i. Let aij ∈ Rij and bji ∈ Rji be arbitrary.
We have

τ([aij , bji])

= ∆([aij , bji])−D([aij , bji])

= [∆(aij), bji] + [aij ,∆(bji)]−D(aijbji − bjiaij)
= [D(aij), bji] + [aij , D(bji)]−D(aijbji) +D(bjiaij)

= D(aij)bji − bjiD(aij) + aijD(bji)−D(bji)aij −D(aijbji) +D(bjiaij),

which implies that

[D(aij)bji + aijD(bji)−D(aijbji)] + [D(bjiaij)−D(bji)aij − bjiD(aij)] = c ∈ C.

If c = 0, then [D(aij)bji + aijD(bji) − D(aijbji)] = −[D(bjiaij) − D(bji)aij −
bjiD(aij)] ∈ Tii ∩ Tjj and hence is equal to 0. If c 6= 0, multiplying the above
equation on the left by aij , we obtain

aijD(bjiaij)− aijD(bji)aij − aijbjiD(aij) = aijc.

It follows from Lemma 2.17 that

D(aijbjiaij)−D(aij)bjiaij − aijD(bji)aij − aijbjiD(aij) = aijc.

Applying Lemma 2.16, we see that aijc = 0. Since C is a field, it follows that
aij = 0, a contradiction.

We now assume that j 6= k. Then we must have k = i and l = j. Let aij , bij ∈
Rij . Then

D(aijbij) = 0 = D(aij)bij + aijD(bij).

�

Lemma 2.20. τ([a, b]) = 0 for any a, b ∈ R.
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Proof. Note that τ(xij) = 0 for all xij ∈ Rij (i 6= j). Thus, by the proof of Lemma
2.19, it suffices to show that

τ([aii, bii]) = 0

for all aii, bii ∈ Rii, i = 1, 2. In fact,

τ([aii, bii])

= ∆([aii, bii])−D([aii, bii])

= [∆(aii), bii] + [aii,∆(bii)]−D(aiibii − biiaii)
= [D(aii) + τ(aii), bii] + [aii, D(bii) + τ(bii)]−D(aiibii) +D(biiaii)

= [D(aii), bii] + [aii, D(bii)]−D(aii)bii − aiiD(bii) +D(bii)aii + biiD(aii)

= 0.

�

Let d = D+ads. Then we can get the following characterization on Lie derivable
mappings on prime rings.

Theorem 2.21. Let R be a 2-torsion free prime ring containing a nontrivial idem-
potent. Suppose that mapping δ : R→ R (no additivity is assumed) satisfies

δ([a, b]) = [δ(a), b] + [a, δ(b)]

for all a, b ∈ R. Then δ is of the form d + τ , where d is a derivation of R into
its central closure T and τ is a mapping of R into its extended centroid C with the
following properties:

(1) There exists a za,b (depending on a and b) in Z(R), the center of R, such
that

τ(a+ b) = τ(a) + τ(b) + za,b.

(2) τ([a, b]) = 0 for all a, b ∈ R.

In particular, we have the following characterization of Lie derivations on prime
rings.

Corollary 2.22. Let R be a 2-torsion free prime ring containing a nontrivial idem-
potent and δ : R→ R be a Lie derivation. Then δ is of the form D+ τ , where D is
a derivation of R into its central closure T and τ is an additive mapping of R into
its extended centroid C such that τ [a, b] = 0 for all a, b ∈ R.
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