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Growth from a hypercooled melt near absolute stability
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We study the stability of a solid-liquid interface in a hypercooled melt, taking into account attachment
kinetics, surface energy, and surface energy in the heat balance. There is a basic-state solution with the
planar interface moving at constant speed. Linear-stability theory gives a long-wave absolute-stability
limit. Near this point we introduce a string model in which we use a thermal-boundary-layer approxi-
mation and obtain an evolution equation for the interface. In a limiting case this interface equation
reduces to a Kuromoto-Sivashinsky equation. Comparison with experimental and numerical results are
discussed and a conceptual picture of unconstrained growth for all undercoolings is addressed.

PACS number(s): 47.20.Hw, 81.30.Fb, 47.20.Ky, 81.10.Fq

I. INTRODUCTION

Unconstrained growth from a pure undercooled liquid
has long been studied as a ‘“‘simple” system displaying
complex dendritic dynamics. The heat liberated on the
solidification front is conducted through each phase. The
local-equilibrium temperature of the front is determined
by the Gibbs-Thomson effect, in which surface energy
times curvature of the interface creates capillary under-
cooling. When the front has significant speed, there
enters another factor that causes interfacial undercooling,
atomic-attachment kinetics.

When the undercooling is small enough, a planar front
can propagate with a time-dependent speed V ~t !/
The front is then always unstable, perhaps, leading to the
formation of dendrites. When undercooling is large
enough, there is a kinetics-controlled steady planar solu-
tion [1-4] in which the interface propagates at constant
speed. The stability of this plane-front solution has been
examined by Novick-Cohen [5], Frankel [6], and Misbah,
Muller-Krumbhaar, and Temkin [7], who showed that
there is a critical undercooling above which the planar
state is stable. They used long-scale asymptotics to
derive a Kuramoto-Sivashinsky equation in the neighbor-
hood of this absolute-stability point.

Wollkind [8], using continuum balances on the solid-
liquid interface, derived a heat-balance equation that in-
cludes the effect of surface energy. Umanstev and Roit-
burd [9] derived the identical condition from thermo-
dynamical arguments. This generalized condition has to
date not been incorporated into models of front dynam-
ics.

In what follows we examine the problem, generalized
by the inclusion of the surface-energy contribution, and,
furthermore, take a different approach. We treat the
front as a string and use a thermal-boundary-layer ap-
proximation to determine an evolutionary system for the
front. In a limiting case this system reduces to the
Kuramoto-Sivashinsky equation [5-7] for the front dy-
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namics; away from this limiting case the string equation
may contain richer dynamics. Finally, we try to give a
conceptual picture of unconstrained growth valid for all
undercoolings by using the present results and observa-
tions of others.

II. FORMULATION

We consider the so-called ‘“one-sided” model of the
two-dimensional case in which heat conduction is al-
lowed only in the liquid. We do so for simplicity, but also
because numerical simulations of related problems [3,10]
show that heat flow into the solid is always small for the
solidification of strongly supercooled liquids. Extension
to the “two-sided” model is given herein.

Heat conduction in the liquid is described by

2 2
2L vt =4 8
at ax? az?
where A and C are, respectively, the thermal conductivity
and the specific heat per unit volume.

The dynamics of the interface at Z=Z is governed by
the boundary conditions. The first of these characterizes
the departure of the interface from local equilibrium; it
determines the relation between the normal growth speed
V, and the temperature T, of the front

(2.1)

Va=mTp—T;) . 2.2)

Here p is the kinetic coefficient and T is the local-
equilibrium temperature, which depends upon the curva-
ture K of the interface according to the Gibbs-Thomson
equation:

T,=T,[1—yK/L]. 2.3)

Here y is the surface tension (surface free energy), T,, is
the melting point, and L is the latent heat of transforma-
tion per unit volume.

The second boundary condition describes the balance
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between the rate of heat release at the boundary and the
thermal flux into the liquid [8,9]:

A3, T;=V,(L—yK) . (2.4)

Here 9, is the derivative in the direction normal to the
front of solidification and pointing into the liquid. The
first term on the right-hand side describes the production
of latent heat, while the second one is due to the creation
or destruction of the interfacial area and hence surface
energy. Actually, instead of the surface free energy y
this term is proportional [9] to the surface energy
(y —Tdy /dT). However, the surface entropy (—dy /dt)
is usually very small and will be neglected here. The
surface-energy term is the only one that contributes to a
curvature-driven motion [11,12].

The problem we consider involves a pure liquid that is
supercooled to temperature T, <T,, and solidifies with
the condition

T—>T, as Z— o . (2.5)

When the supercooling of a liquid is large enough
T, <T, —L/C (hypercooled liquid), there exists [1-4] a
solution with a planar interface that moves at constant
speed. This behavior is represented by the basic-state
solution to the system (2.1)—(2.5) as follows:

T(Z,))=T, +(L/Clexp[—(Vo/aNZ —~Z;) ,

Z>Zs(1) (2.6
Vo=w(T,—T,—L/C), (2.8)

where the Z axis is directed towards the liquid phase per-
pendicular to the planar front, ¥V, is its speed, and
a=A/C is the thermal diffusivity. The temperature in
the solid is constant.

III. GEOMETRICAL APPROACH
TO THE INTERFACE EVOLUTION

We now introduce a geometrical approach to the prob-
lem (2.1)-(2.5). In a two-dimensional space a front be-
tween solid and liquid can be represented as a string
which is a heat source that moves according to the evolu-
tion of the temperature field. The geometry of the string
is determined by its natural equation in which the curva-
ture K is treated as a function of the arc length s:

K(s,0)=3,¢ . (3.1)

Here ¢ is the angle between the normal to the front and a
fixed direction, and 9, denotes differentiation with respect
to arc length. The motion of the string is governed by
the normal growth velocity V,,, as shown in Fig. 1. The
equation of motion [13,14] for K is given by

3,K +(3,K) [ KV,ds+K2V,+3V, =0, 3.2)

where 9, denotes the time derivative for constant s.
Notice that Eq. (3.2) has a shape-preserving solutions

[13]: K=K(¢), V,xcosp. For a curvature-driven
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FIG. 1. The liquid-solid interface in the y =Z +iX plane in
the geometrical approach. V is the complex velocity of a point
(u,v), V, is its normal, and V| is its tangential speed. ¢ is the
angle between the normal n and the positive Z direction. Inset:
the liquid-solid interface in the w =u +iv plane.

motion [11] V, =
equation

—BK and Eq. (3.2) gives the evolution

B~19,K =9, [K szds]+a§K :

which has the time-decaying solution
K(t)"'=[K(0)"2—2Bt]"? which describes a motion of
a circle [12].

Equation (3.2) is a purely geometrical one and all
dynamical features of the problem are contained in the
quantity V,. In order to relate V, to the curvature and
other quantities of our problem we analyze the thermal
field utilizing a time-dependent set of orthogonal curvilin-
ear coordinates (#,v) chosen so that u =0 gives the inter-
face position at all times. To simplify the analysis we uti-
lize the techniques of the theory of analytic functions of
complex variables.

Consider a time-dependent conformal transformation
of coordinates from (Z,X) to (u,v) such that the function
w =u +iv is a one-to-one analytic function of y =Z +iX:

w=Wi(y,t) (3.3)
with one-to-one analytic inverse function
y=Y(w,t)=Z(w,t)+iX(w,?) . (3.4)

The derivative of the transform (3.4) can be written in the
form

_dl= ip

dw he'? | (3.5)
where p=arg(y’) is the angle between (u,v) and (Z,X)
coordinates at any point (Fig. 1). Geometrical properties
of coordinates (u,v) can be expressed in terms of the scale
factors of the coordinates that are equal for conformal
transforms:
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2 2

aw
dy

Ou
3z

h2=

2 a 2
v
N

? d
u
ol

v
oZ
(3.6)
Then, from the analyticity of (3.3), we obtain
d,u=0,v=h"",
d9,v=9,=0,

(3.7a)
(3.7b)

where n and s are unit vectors in the directions perpen-
dicular to the lines u is constant and v is constant, respec-
tively (Fig. 1). For derivatives in the (Z,X) plane we have

J _. .
3z (cosg)d,, — (sing)9; , (3.8a)
d .
X =(sing)d,, +(cosp)d; , (3.8b)
so that the Laplacian operator can be written
Vi=32+02+Kd,—(d,p)3, , (3.9)

where K is the curvature of the line u =const. The
operators d,, and 9, do not commute. Their commutator
(Poisson’s brackets) can be calculated from Egs. (3.8)

[3,,3,1=9,9, —9,3, =K, + (3,93, , (3.10)

which gives us an infinite set of formulas for the
geometry of the new system of coordinates (u,v). We
shall write down some of them.

First, let us employ (3.10) on functions u(Z,X) and
v(Z,X). Taking into account (3.7) we get

3,h=hK ,
dh=—hd,p .

(3.11a)
(3.11b)

Then, we employ form (3.10) for the argument and
modulus of the function (3.5) to obtain

9,K=—(K?+3h/h),
Np=—3,K .

(3.12a)
(3.12b)

These formulas are consequences of the fact that the ar-
gument and logarithm of the modulus of an analytic
function are harmonic functions.

To characterize the dependence of the transform (3.4)
on time we introduce the complex velocity of a point
(u,v) in the y plane

Jy=V=V,+iv, , (3.13)

where V,dt and V,dt are infinitesimal displacements of
the point (,v) in the Z and X directions after a period of
time dt. Since ¥V (w) is an analytic function, we can write

v, av,
v, oV,
3z =— 3x - (3.14b)

The differential of the function (3.3) is equal to
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oW dw
dw=——dt+——dy ,
w ot dy Y
where 3/0¢ is the derivative in the y plane. If dw =0,
then from (3.5) and (3.13) we obtain
a—W+h“Ve_“P=0 .
ot
From the definition (3.5) of an angle @ one can see that
Re(Ve "'?) is the component of V in the n direction. In-
troducing the component V; of V in the s direction we
can write

(3.15)

Ve 9=V, +iV, . (3.16)
For the transformation of coordinates this yields
% hy =0, (3.17a)
ot
v -1y —
—+h V,=0. (3.17b)
ot
Using the definitions (3.13) and (3.16), one can obtain
V,=V,cosp+V, sing , (3.18a)
V.=V, cosp—V,sing . (3.18b)

From formula (3.16) one can see that ¥, +iV, is not an
analytic function and from Egs. (3.8), (3.13), (3.14), and
(3.18) produce a system of equations

an Vn _aS VS= Vsan(p+ Vnas(p ’
oV, +9,V,=V3,¢—V,0,¢ .

(3.19a)
(3.19b)

To proceed with our task we reformulate the problem
(2.1)-(2.5) for the function Y(u,v,t)
=C[T(Z,X,t)—T,]/L. Utilizing (3.17), we can write
for the time derivative in the y plane

o _
ot
Thus forms (2.1), (3.9), and (3.20) give us the heat equa-

tion in the time-dependent curvilinear system of coordi-
nates:

—V,3,¥—V,0,¥+3,V . (3.20)

Va
R+ K+ 9, +d2
a

1Y s pla—La lw=o. @21
=8, |3, — -, .G

We must provide it with the boundary conditions
(2.2)-(2.4) on the interface u =0:

3,¥=—(V,/a)1—QLK),
Y=1+6—1K—1,V,/a.

(3.22)
(3.23)

Here I,=CT,,y /L? is the capillary length, l,=A/pL is
the kinetic length, 6=(C/L)XT,, — T, )—1 is the hyper-
cooling of a liquid, and Q =L /CT,,.

This is a regular boundary-value problem, (3.21)—(3.23),
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but not a free-boundary problem. It has the plane, steady
solution

K =0, ¢=0, h=a/V,,
V,=Vo=ab/l,, ¥Y=e ",

V,=0,

s

(3.24)

which is identical to forms (2.6)-(2.8). For an arbitrary
interface [15] we may choose coordinates (u,v) so that
everywhere on the half-plane u >0 the temperature field
is given by

V=gye *, ¢v=1-[K+6—1,V,/a (3.25)
and

9,¥=—(V,/a)(1—=QI.K)e " . (3.26)
For the scale factor 4 this yields

b 1=l K+6—1,V,/a (3.27)

(V, /a)1—QI.K)—1.8,K—1,3,V,/a

We then multiply Eq. (3.21) by 4 and take the line in-
tegral along the line v =const from u# =0 to <, taking
into account relations (3.22), (3.23), and (3.25)-(3.27), to
get the heat equation in the integral form:

[ fen )
a a
1,V. LV,
+ | [ - +[ “—1] K+ICK2]
a a u=0
=[" aK+La v —a+ |a.p— LV, o
0 n a n n S n a S S
1 _u
+=9, |Yhe “du . (3.28)
a

From Eq. (3.28) one can then obtain the first approxi-
mation to the basic state (3.24):

4 —0(1—0)R ! !
w0 120U OR gy k), R=E
a 1 0 I,

"

(3.29)

which shows that all perturbations of a plane front grow
if <R /(1—Q) and decay if 6> R /(1—Q) [16]. Thus
the absolute stability criterion can be expressed as

6.=R/(1—Q) . (3.30)

The absolute stability boundary is approached when the
thermal length I/ =a/V, becomes equal to /,(1—Q). If
Q =0 this criterion of linear stability coincides with the
criterion [5-7], which has been obtained by the normal-
mode analysis, but without the consideration of the dissi-
pation mechanism in (2.4).

Now we want to introduce the thermal boundary-layer
model for the nonlinear analysis of Eq. (3.28). Functions
¥(u,v,t) and h (u,v,t) do not vary strongly in this layer as
compared with exp(—u) because the thickness of this
layer /5 is much smaller than its radius of curvature
(large-Péclet-number approximation). Thus the term be-
fore the exponent can be removed from the integral and

we can write down the equation for the interface u =0:

1V, l
=
a

+ (1. +¢h)K*+932h +hd2—+(3,h)(d,1)

V,

n

Lv,

a

LV,

K
a

+ih(VSaS¢—¢a,, V,)— iha,z/;:o . 33D

The set of equations (3.19), (3.27), and (3.31) deter-
mines the relation between V,, K, and ¢ on the interface
u =0 in the limit of a thin thermal layer, and constitutes
a closed system for the evolution of the front.

To examine the nonlinear development of the unstable
long waves near the absolute stability limit we introduce
the small parameter € which measures departures from
the absolute stability boundary:

1—-Q
:1— —_—=
€ 0 R

Then Egs. (3.2) and (3.29) give us the scaling of these
waves:

(3.32)

1 €
—~—~K .
t 52

(3.33)

The set of equations (3.19), (3.27), and (3.31) admits the
solution, consistent with this scaling:

¢=1_1CK+0(63) , (3343)
l

h="2[1-(1-QILK]+0(E) , (3.34b)
V.
;:_i¢+0(65/2) ’ (3.34¢)
a 1,

1% 1.1

n :i+£K+(2—Q)—2"afK+0(e4), (3.34d)
a L, 6 0
s~e 12 t~e? g~ K~é . (3.34¢)

If we insert the expression for V,, given by (3.34d) into
Eq. (3.2), we obtain the evolution equation of the front in
its natural coordinates

11
3K =0 .

1 0 2 ]2 € 2
L 3,K+— +E32k +(2—
oK ZIHaS[des FAK+(2—0)—

(3.35)

To write this equation in Cartesian coordinates we denote
the interface position in the frame of reference moving
with the speed V, as Z,=H (X,t) and recall that s ~X
and K =~ —Hyy. Then Eq. (3.35) is as follows [17]:
(1/a)H,+(2—Q)(1.1,/6*) Hyyxyx

+(e/0)Hyy — (6721, )Hy = (3.36)

The mean relative velocity of the front can be deter-
mined as

_1pid %
vo==[ X, J, Haxar, (3.37)
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where X, is the size of a crystal in X direction. We can
rescale Eq. (3.36) with

172 2
_ 4le| /A X - 4 |e| at
1-002-0) | 1’ 2-Q |A | 11"
2
1 6H € X
SEPR S : N\ S — 3.38
=1 g M a—oe-0 | (3.38)

to obtain the normalized Kuramoto-Sivashinsky equation
on the interval 0 <x <27,

§T+4§xxxx +Aq(§xx +%§,2¢ )=0 ,

where g =sgne. This is an evolution equation of the
Kuramoto-Sivashinsky type that governs the stability of
the basic state £=0. For Q =0 in A, it coincides with
that given by Novick-Cohen [5] in the zero-temperature-
gradient limit, Frankel [6], and Misbah, Miiller-
Krumbhaar, and Temkin [7]. Much work (see, e.g.,
[18,19]) has been done on the spatiotemporal dynamics of
this equation. For ¢ =1, the planar state is linearly un-
stable if 0<k?<(4A)”' and stable otherwise. For
g = —1, the planar state is linearly stable. For the 27-
periodic solutions of (3.39) we can obtain an expression
for the mean relative velocity

(3.39)

(1—0) ﬁ63<§§>
2—Q R? A’

1 0 2w
27Ty fo fo Erdxdr.

(v,)=2

(&)=

Hyman and Nicolaenko [18] have shown that (£2) is
proportional to A. Thus (¥, ) is independent of A, the
size of the growing crystal. Hence the mean speed of a
growing crystal in the laboratory frame of reference can
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be written as follows:

V=V, (3.40)

63
1+b;2- s

with numerical coefficient b ~1. This equation gives the
local transcritical bifurcation structure from the planar
front to a cellular interface near the point of absolute sta-
bility. From Eq. (3.25), (3.27), (3.34a), and (3.34b) we can
retrieve the temperature field for hypercoolings
6 <R /(1—Q) and see that the first correction to the tem-
perature field of the basic state is of the order € and
comes from the surface tension of the curved front. Fi-
nally, from the scaling (3.34e) and (3.38) one can see that
near the absolute stability |H|<<I; <<K ~!. It means
that we have thin thermal boundary layer (Kl <<1, large
Péclet number) in front of a slightly deflected interface
(|H| <z, || <<1).

From Eq. (3.2) it can be seen that an evolution of any
front should always obey an equation of the Kuromoto-
Sivashinsky type if the normal component of its growth
rate relates to its curvature as

V=C,+C,K+C;0’K+0(K), (3.41)
where the C; are constants. This can be true near the
absolute-stability limit. Thus the same or related equa-
tions appear in many problems of widely varying physical
nature [20].

1IV. DISCUSSION OF EXPERIMENTS

The critical value of the hypercooling 6, =R /(1—Q) is
the only point of the absolute stability. The parameter R
is the ratio of kinetic and capillary lengths. Crystalliza-
tion (as well as other phase transitions) is a process of or-

-1 0 HYPERCOOLING 0 R/(1-Q)
T T
— 400 or 0
O. g SUPEmEDl
N § <~
o b——— }-200 —_— — — |
Fal 2 B 7,
s g HYPERCOOLED / ]
0 1) A0 e |
> - i
- I
- I
a e '
w . I
E . pd I
(/2] ) - :
i I
0. ]
0 R 1 UNDERCOOLING A6 1+R/(1-Q)

FIG. 2. Sketch of solutions ¥ vs A@ of the unconstrained growth problem. The solid line is a conjectured dendritic-cellular
branch, and the dash-dotted line is the unstable planar solution. Inside the circle the Kuromoto-Sivashinsky equation applies. Inset:
experimental data [2].
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dering which may be described by the relaxation equation
of the diffusion type. There it can be shown [21] that the
parameter R is the ratio of diffusivities of two processes
in the system: thermal and ordering. A typical value of
the coefficients R and Q are, respectively, 100 and 0.3 for
metals and 10 and 0.08 for organic liquids and white
phosphorus. Thus, to reach the absolute stability bound-
ary one needs to hypercool the liquid strongly below the
melting point. However, the temperature of a liquid
should not fall below the limit of the thermodynamic sta-
bility of a liquid state. Besides, the capillary length I,
should be much larger than the thickness of the interfa-
cial transition region. Otherwise, when [/;=I[, the
boundary conditions (2.2)-(2.4) are no longer valid and
the concept of the front ceases to be meaningful. Both
restrictions can be fulfilled for substances with low values
of the parameter Q [21].

The restoration of stability during solidification of hy-
percooled liquids has been experimentally observed in the
crystallization of cyclohexanol, which has Q =0.03.
Ovsienko, Alfintsev, and Maslov [22] have remarked that
rounded, macroscopically smooth forms appear at large
supercoolings of the sample. The appearance of crystals
with morphologically smooth fronts from hypercooled
liquid has been seen in computer simulations of dendritic
growth [10] and was attributed to a decrease of the
thermal length. However, the point of the absolute sta-
bility was thought to occur when the thermal length is
equal to the radius of curvature of the tip of a dendrite;
Eq. (3.30) gives the correct result, /- =(1—Q)l..

The derived theory, together with experimental and
numerical results [2,10,22,23], may aid in giving one a
conceptual picture of unconstrained growth over the full
range of undercoolings A6=1+6.

In Fig. 2 we plot mean front speed versus undercool-
ing. The dash-dotted curve represents the planar front,
traveling at ¢!/ for AG<1 and at constant speed for
A6>1. The planar interface is always unstable for
0<AB<1+R/(1—Q), but is stabilized at Af,, the abso-
lute stability boundary. The solid curve in Fig. 2
represents our conjecture for the curve of the dendritic-
cellular branch that emerges from the unstable plane
solution. For small supercoolings A6 there is a
quasiequilibrium region where surface-energy effects
dominate (A@<R™'). For larger undercoolings
(A6 > R ~1), kinetic effects are more important.

In the inset of Fig. 2 the experimental data of Glicks-
man and Schaefer [2] on white phosphorous, display two
points of inflection near A@=1 which may suggest the ex-
istence of morphological transitions. (Note that these are
not evident in the log-log plot of Ref. [2].) Glicksman
and Schaefer observe there a change in the morphology
to a ‘“‘quasiplanar” front. Furthermore, Fedorov, Bor-
isov, and Maslov [23] show that for the succinonitrile-
salol mixture there is a transition of morphologies just
below the solidus, a position analogous to A6 just above
unity.

Our contribution applies for large A6, in a neighbor-
hood of Af., as indicated by the circle in Fig. 2. The
Kuromoto-Sivashinsky equation (3.36) governs, among
other things, the bifurcation to cells whose mean speeds
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are given by Eq. (3.40). The string theory applies here as
well, but may have broader validity. Our conjecture is
that our local solutions near Af, are part of the single
branch shown in Fig. 2 along which several points of
transition occur.

V. CONCLUSIONS

We have considered a pure liquid solidifying due to
deep supercooling. When the supercooling A8 exceeds
unity, a planar interface can propagate at constant speed.
A string theory is employed in which the evolution of the
string curvature K is related to its normal speed V,.

For AO>1 the linear stability theory of the planar
front shows that the front is unstable for all A8 up to the
critical value A0, =1+R/(1—Q) at which point the
front is restabilized by the joint effects of surface energy
and kinetic undercooling. This result generalizes that of
[5-7] to include surface energy in the interfacial-heat-flux
condition (Q+0). Using typical values, Q~0.30 for
metals and 0.08 for organic liquids and white phos-
phorous, one can see that in the former case, there is a
significant shift in the absolute-stability boundary by the
inclusion of these surface-energy effects. For phase tran-
sitions different from solidification the parameter Q may
be even larger than unity which shifts the point of abso-
lute stability substantially to the region of supercoolings
A6 < 1. This might be the reason for the stability of in-
terfaces in many solid-state diffusional transformations
from a metastable phase.

Furthermore, the string theory used yields the linear
stability boundary without the necessity of introducing
normal modes. Our approach relies on the approxima-
tion of the thin thermal-boundary layer (large Péclet
number) in front of a slightly deflected interface
(lpl <<1) which is justified near the absolute stability
boundary. This yields the relation V,=V,(K), Eq.
(3.34d), that governs the interface dynamics. This form is
familiar from the work of Brower et al. [13], who as-
sumed such a law in their examination of dendrite dy-
namics in the absence of kinetic effects. In our case we
have derived such a relation and it holds only near the
absolute-stability boundary. If form (3.41) is used in
(3.2), then we obtain the Kuromoto-Sivashinsky equation
for the interface evolution. One advantage of the string
theory as compared to the singular asymptotic method
[5-7] is that it may have the potential of describing be-
havior farther from the absolute-stability boundary.

The local bifurcation structure of mean speed V versus
undercooling A6, as given by the string theory, can be in-
corporated into a conceptual picture of unconstrained
growth for all A, as discussed in Sec. VI.
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