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ADDITIVITY OF LIE CENTRALIZERS ON TRIANGULAR

RINGS

WU JING

Abstract. We introduce the definition of Lie centralizers and investigate the

additivity of Lie centralizers on triangular rings. Characterizations of cen-
tralizers and Lie centralizers on triangular rings and nest algebras are also

presented.

1. Introduction and preliminaries

Let R be a ring. An additive mapping T : R → R is called a left (resp. right)
centralizer if T (ab) = T (a)b (resp. T (ab) = aT (b)) for any a, b ∈ R. T is called a
centralizer if it is both a left and a right centralizer. Centralizers on rings as well as
algebras have been extensively investigated by many mathematicians (see [7], [8],
[9], [10], [12], [14], and references therein). Motivated by the concept of centralizers
on rings, we here introduce the definition of Lie centralizers as follows.

Definition 1.1. Let R be a ring and δ : R → R an additive mapping. Then δ is
called a Lie centralizer of R if

δ([a, b]) = [δ(a), b] (or δ([a, b]) = [a, δ(b)])

holds true for any a, b ∈ R, where [a, b] = ab− ba is the usual Lie product of a and
b.

Remark 1.2. Observe that if δ([a, b]) = [δ(a), b], then we have

δ(ab− ba) = δ(a)b− bδ(a).

Interchanging a and b in the above identity, we have

δ(ba− ab) = δ(b)a− aδ(b).
Replacing a with −a in the above relation, we arrive at δ(ab− ba) = aδ(b)− δ(b)a,
which can be written as δ([a, b]) = [a, δ(b)]. Thus conditions δ([a, b]) = [δ(a), b] and
δ([a, b]) = [a, δ(b)] are equivalent regardless of the additivity of δ.

Recall that an additive map of ring R into itself is called a commuting map if
[T (a), a] = 0 for arbitrary a ∈ R.

One can easily check that each centralizer is a Lie centralizer and every Lie
centralizer is a commuting map.

Over the last decades a lot of work has been done on the additivity of mappings
on rings and operator algebras. We refer the readers to some recent papers [1, 5,
6, 11, 15] where further references can be found. However, to author’s knowledge,
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2 WU JING

there has no result on additivity of commuting maps on rings. It is the aim of this
paper to initiate the study of additivity of commuting maps by investigating the
additivity of Lie centralizers on triangular rings. We will show that if δ is a map of
a triangular ring V = Tri(A,M,B) to itself satisfying

δ([A,B]) = [δ(A), B]

for any A,B ∈ V, then δ = σ + τ , where σ : V → V is a centralizer and τ : V →
Z(V) is a mapping such that τ(A+B) = τ(A)+τ(B)+ZA,B for some ZA,B ∈ Z(V)
(depending on A and B) and τ([A,B]) = 0 for any A,B ∈ V. Characterizations
of centralizers and Lie centralizers on triangular rings and nest algebras are also
presented.

Recall that a triangular ring V = Tri(A,M,B) (see [2] and [13]) is a ring of the
form

V = Tri(A,M,B) =

{[
a m
0 b

]
: a ∈ A,m ∈M, b ∈ B

}
under the usual matrix operations, where A and B are two rings over a commutative
ring R, andM is an (A,B)-bimodule which is faithful as a left A-module and also
as a right B-module (see [13]). The center of V is

Z(V) =

{[
a 0
0 b

]
: am = mb for all m ∈M

}
.

Let πA : V→ A and πB : V→ B be the natural projections defined by[
a m
0 b

]
7→ a and

[
a m
0 b

]
7→ b

respectively. Then πA(Z(V)) ⊆ Z(A) and πB(Z(V)) ⊆ Z(B), and there exists a
unique ring isomorphism ω : πA(Z(V)) → πB(V)) such that am = mω(a) for all
m ∈M (see [11]).

Let

Z(A)V =

{[
a 0
0 0

]
: a ∈ Z(A)

}
and

Z(B)V =

{[
0 0
0 b

]
: b ∈ Z(B)

}
.

We set

V11 =

{[
a 0
0 0

]
: a ∈ A

}
,

V12 =

{[
0 m
0 0

]
: m ∈M

}
,

and

V22 =

{[
0 0
0 b

]
: b ∈ B

}
.

Then we may write V = V11⊕V12⊕V22, and every element A ∈ V can be written
as A = A11 + A12 + A22. Note that notation Aij will denote an arbitrary element
of Vij .

Let H be a Hilbert space over field F ∈ {R,C}. The algebra of all bounded linear
operators on H is denoted by B(H). For x, y ∈ H, we denote the inner product of
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these vectors by 〈x, y〉 and the rank one operator u 7→ 〈u, y〉x by x⊗ y. Note that
every rank one operator on H can be written in this form.

2. Additivity of Lie centralizers on triangular rings

In this section, we aim to study the additivity of Lie centralizers on triangular
rings. Note that, different from [2], [4], and [15], the rings A and B in triangular
algebra V = Tri(A,M,B) in most part of this section need not be unital. We also
want to mention that our approaches are different from those in [2], [4], and [15]
which mainly depend on the existence of identity elements in the underlying rings.

In what follows, δ : V→ V will be a mapping such that

δ([A,B]) = [δ(A), B]

holds true for all A,B ∈ V, where V = Tri(A,M,B) is a triangular ring satisfying
(C1) if Am = {0} (resp. mB = {0}), then m = 0;
(C2) πA(Z(V)) = Z(A) and πB(Z(V)) = Z(B).

Lemma 2.1. For any A,B ∈ V, there exists a ZA,B ∈ Z(V) such that

δ(A+B) = δ(A) + δ(B) + ZA,B .

Proof. For any A,B,X ∈ V, noticing that δ([A,B]) = [δ(A), B] = [A, δ(B)], we
have

[δ(A+B), X] = [A+B, δ(X)]

= [A, δ(X)] + [B, δ(X)]

= [δ(A), X] + [δ(B), X]

= [δ(A) + δ(B), X],

which implies that δ(A + B) − δ(A) − δ(B) ∈ Z(R). Thus, there exists a ZA,B ∈
Z(V) such that

δ(A+B) = δ(A) + δ(B) + ZA,B .

�

Lemma 2.2. (1) δ(V11) ⊆ V11 ⊕Z(B)V.
(2) δ(V22) ⊆ Z(A)V ⊕V22.

Proof. We only prove (1). Let A11 ∈ V11 and write δ(A11) = U11 +U12 +U22. For
any B22 ∈ V22, we consider

0 = δ([A11, B22])

= [δ(A11), B22]

= δ(A11)B22 −B22δ(A11)

= U12B22 + U22B22 −B22U22,

which yields that U12B22 = 0. Therefore, U12 = 0 and U22B22 = B22U22. Thus we
can conclude that δ(A11) = U11 + U22 with πB(U22) ∈ Z(B). �

By Lemma 2.2, we can define two mappings τ1 : V11 → Z(V) by

τ1(A) = ω−1(πB([δ(A)]22))⊕ πB([δ(A)]22) for any A ∈ V11

and τ2 : V22 → Z(V) by

τ2(B) = πA([δ(B)]11)⊕ ω(πA([δ(B)]11)) for any B ∈ V22.
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It follows from the proof the above lemma that δ(A)−τ1(A) ∈ V11 for any A ∈ V11

and δ(B)− τ2(B) ∈ V22 for any B ∈ V22.

Lemma 2.3. δ(V12) ⊆ V12 ⊕Z(V).

Proof. Pick A12 ∈ V12 and write δ(A12) = U11 + U12 + U22. For any X12 ∈ V12,
we have

0 = δ([A12, X12]) = [δ(A12), X12] = δ(A12)X12 −X12δ(A12) = U11X12 −X12U22.

It follows that U11 + U22 ∈ Z(V). �

The above lemma enables us to define a mapping τ3 : V12 → Z(V) by

τ3(A) = [δ(A)]11 + [δ(A)]22 for any A ∈ V12.

It turns out, from the proof of Lemma 2.3, that δ(A)−τ3(A) ∈ V12 for any A ∈ V12.
Suppose that τ3(A) = C1 ∈ Z(V) and τ3(A) = C2 ∈ Z(V) for A ∈ V12. Then

C2 − C1 = (δ(A)− C1)− (δ(A)− C2) ∈ V12 ∩ Z(V) = {0}.
Thus, τ is well defined.

We now continue to define a mapping τ : V→ Z(V) by

τ(A) = τ1(A11) + τ2(A22) + τ3(A12)

for any A = A11 +A12 +A22 ∈ V and a mapping σ : V→ V is then defined by

σ(A) = δ(A)− τ(A).

By the definitions of σ and τ , one can verify that

Lemma 2.4. (1) σ(Vij) ⊆ Vij for 1 ≤ i ≤ j ≤ 2.
(2) τ(A11 +A12 +A22) = τ(A11) + τ(A12) + τ(A22).

Lemma 2.5. For any A,B ∈ V, by Lemma 2.1, there exists a ZA,B ∈ Z(V) such
that δ(A+B) = δ(A) + δ(B) + ZA,B ∈ Z(V), then

(1) τ(A+B) = τ(A) + τ(B) + ZA,B.
(2) σ is additive.

Proof. (1) In view of Lemma 2.4, we only need to consider the following cases:

Case 1. τ(A12 +B12) = τ(A12) + τ(B12) + ZA12,B12
for some ZA12,B12

∈ Z(V).
It follows from Lemma 2.1 that there exists a ZA12,B12 ∈ Z(V) such that

δ(A12 +B12) = δ(A12) + δ(B12) + ZA12,B12
.

Therefore,

τ(A12 +B12)− τ(A12)− τ(B12)− ZA12,B12

= δ(A12 +B12)− σ(A12 +B12)− δ(A12)

+σ(A12)− δ(B12) + σ(B12)− ZA12,B12

= σ(A12) + σ(B12)− σ(A12 +B12) ∈ Z(V) ∩V12 = {0}.

Case 2. τ(Aii +Bii) = τ(Aii) + τ(Bii) + ZAii,Bii
for some ZAii,Bii

∈ Z(V).
With the same argument as in Case 1, we can get

τ(Aii +Bii)− τ(Aii)− τ(Bii)− ZAii,Bii

= σ(Aii) + σ(Bii)− σ(Aii +Bii) ∈ Z(V) ∩Vii = {0}.
(2) It is a direct consequence of (1). �
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Lemma 2.6. σ is a centralizer.

Proof. We divide the proof into three steps.

Step 1. σ(A11B12) = σ(A11)B12 and σ(A12B22) = σ(A12)B22.
Indeed, by Lemma 2.4,

σ(A11B12) = δ(A11B12) = δ([A11, B12])

= [δ(A11), B12] = [σ(A11) + τ(A11), B12]

= [σ(A11), B12] = σ(A11)B12 −B12σ(A11)

= σ(A11)B12.

One can check in a straightforward way that σ(A12B22) = σ(A12)B22.

Step 2. σ(A11B11) = σ(A11)B11 and σ(A22B22) = σ(A22)B22.
For arbitrary X12 ∈ V12, applying Step 1 twice, we have

σ(A11B11)X12 = σ(A11B11X12) = σ(A11)B11X12,

which implies that [σ(A11B11) − σ(A11)B11]X12 = 0. Since M is a faithful left
A-module, we can conclude that σ(A11B11) = σ(A11)B11.

Using the fact thatM is also a faithful right B-module, one can deduce σ(A22B22) =
σ(A22)B22.

Step 3. σ(AB) = σ(A)B.
We write A = A11 + A12 + A22 and B = B11 + B12 + B22. One one hand, by

Lemma 2.5 and Steps 1 and 2 above, we have

σ(AB) = σ[(A11 +A12 +A22)(B11 +B12 +B22)]

= σ(A11B11 +A11B12 +A12B22 +A22B22)

= σ(A11B11) + σ(A11B12) + σ(A12B22) + σ(A22B22)

= σ(A11)B11 + σ(A11)B12 + σ(A12)B22 + σ(A22)B22.

On the other hand, applying Lemma 2.4, we get

σ(A)B = σ(A11 +A12 +A22)(B11 +B12 +B22)

= [σ(A11) + σ(A12) + σ(A22)](B11 +B12 +B22)

= σ(A11)B11 + σ(A11)B12 + σ(A12)B22 + σ(A22)B22.

Thus, σ is a left centralizer. In a similar manner, one can check that σ is also a
right centralizer. �

Lemma 2.7. For any A,B ∈ V, τ([A,B]) = 0.

Proof. Apply Lemma 2.6, we compute

τ([A,B]) = δ([A,B])− σ([A,B])

= [δ(A), B]− σ(AB −BA)

= [σ(A) + τ(A), B]− σ(AB) + σ(BA)

= [σ(A), B]− σ(A)B +Bσ(A)

= 0.

�

Based on the above lemmas, we can conclude that
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Theorem 2.8. Let V = Tri(A,M,B) be a triangular ring satisfying
(C1) if Am = {0} (resp. mB = {0}), then m = 0;
(C2) πA(Z(V)) = Z(A) and πB(Z(V)) = Z(B).

If mapping δ : V→ V has the property that

δ([A,B]) = [δ(A), B]

for any A,B ∈ V, then δ = σ + τ , where σ : V → V is a centralizer and τ : V →
Z(V) is a mapping such that for any A,B ∈ V

(1) τ(A+B) = τ(A) + τ(B) + ZA,B for some ZA,B ∈ Z(V);
(2) τ([A,B]) = 0.

Particularly, we have

Corollary 2.9. Let V = Tri(A,M,B) be a triangular ring with the properties:
(C1) if Am = {0} (resp. mB = {0}), then m = 0;
(C2) πA(Z(V)) = Z(A) and πB(Z(V)) = Z(B).

Then each Lie centralizer δ : V → V can be expressed as δ = σ + τ , where σ :
V→ V is a centralizer and τ : V→ Z(V) is an additive mapping that vanishes at
commutators.

We now turn our attention to centralizers on triangular rings. Different from
the conditions in the above theorems, for a triangular ring W = Tri(A,M,B), we
only assume that both A and B are unital. The identity elements of A and B are
denoted by 1A and 1B respectively. We also use a⊕b and m̂ to denote the elements[
a 0
0 b

]
and

[
0 m
0 0

]
respectively. We take the liberty of borrowing Cheung’s method

([2]) in the proof of the following theorem.

Theorem 2.10. Let W = Tri(A,M,B) be a triangular ring, where both A and B
are unital. Suppose that mapping σ : W→W satisfies

σ(AB) = σ(A)B = Aσ(B)

for all A,B ∈W, then σ is a centralizer and there exists a T ∈ Z(W) with πA(T ) ∈
Z(A) and πB(T ) ∈ Z(B) such that for any A ∈W

σ(A) = TA.

Proof. We write

σ

([
a m
0 b

])
=

[
f11(a) + g11(m) + h11(b) f12(a) + g12(m) + h12(b)

0 f22(a) + g22(m) + h22(b)

]
,

where f11 : A → A, f12 : A → M, f22 : A → B, g11 : M → A, g12 : M → M,
g22 :M→ B, h11 : B → A, h12 : B →M, and h22 : B → B are maps.

Note that a⊕ 0 = (a⊕ 0)(1A ⊕ 0). Then we compute σ(a⊕ 0) in two ways:[
f11(a) f12(a)

0 f22(a)

]
= σ(a⊕ 0) = σ[(a⊕ 0)(1A ⊕ 0)] = σ(a⊕ 0)(1A ⊕ 0)

=

[
f11(a) f12(a)

0 f22(a)

] [
1A 0
0 0

]
and[

f11(a) f12(a)
0 f22(a)

]
= σ(a⊕ 0) = σ[(a⊕ 0)(1A ⊕ 0)] = (a⊕ 0)σ(1A ⊕ 0)

=

[
a 0
0 0

] [
f11(1A) f12(1A)

0 f22(1A)

]
.
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It follows that f12(a) = f22(a) = 0 and f11(a) = af11(1A).
In a similar manner by using a⊕0 = (1A⊕0)(a⊕0), one can easily get f11(a) =

f11(1A)a. Thus f11(1A) ∈ Z(A).
With the same argument for 0 ⊕ b = (0 ⊕ b)(0 ⊕ 1B) = (0 ⊕ 1B)(0 ⊕ b) we can

deduce that h11(b) = h12(b) = 0 and h22(b) = bh22(1B) = h22(1B)b for any b ∈ B
and h22(1B) ∈ Z(B).

Using the facts that m̂ = (1A ⊕ 0)m̂ and m̂ = m̂(0 ⊕ 1B) we can infer that
g11(m) = g12(m) = 0 and g12(m) = f11(1A)m = mh22(1B) for any m ∈M.

Therefore, σ takes the form

σ

([
a m
0 b

])
=

[
f11(1A)a g12(m)

0 h22(1B)b

]
,

with f11(1A) ∈ Z(A), h22(1B) ∈ Z(B), and g12(m) = f11(1A)m = mh22(1B).
Let

T =

[
f11(1A) 0

0 h22(1B)

]
,

then T ∈ Z(W), πA(T ) ∈ Z(A), πB(T ) ∈ Z(B), and

σ

([
a m
0 b

])
= T

[
a m
0 b

]
.

The proof of the theorem is thereby complete. �

Note that if both A and B are unital, Condition (1) in Theorem 2.8 is satisfied.
Comparing with Theorem 2 in [2], we can have a sufficient condition for each Lie
centralizer to be proper as follows.

Corollary 2.11. Let W = Tri(A,M,B) be a triangular ring with both A and B
are unital. If πA(Z(W)) = Z(A) and πB(Z(W)) = Z(B), then each Lie centralizer
δ on W is proper, that is, there is a T ∈ Z(W) and an additive map τ : W→ Z(W)
vanishing at each commutator such that

δ(A) = TA+ τ(A)

for all A ∈W.

We complete this paper by considering the nest algebra case. Recall that a nest
N in a Hilbert space H over the real or complex field F is a chain of orthogonal
projections on H including 0 and I which is closed in the strong operator topol-
ogy. The nest algebra associated to N , denoted by AlgN , is the operator algebra
consisting of all bounded linear operators that leave N invariant, i.e.,

AlgN = {A ∈ B(H) : AP = PAP for all P ∈ N}.
Note that the center of AlgN is FI, where I is the identity operator on H.

We first look at a very special case.

Lemma 2.12. Let H be a Hilbert space H with dimH > 1. Suppose that map
σ : B(H)→ B(H) satisfies

σ(AB) = σ(A)B = Aσ(B)

for arbitrary A,B ∈ B(H). Then σ is automatically linear and there is a λ ∈ F
such that

σ(A) = λA

for all A ∈ B(H).
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Proof. Since dimH > 1, we may pick vectors x0, y0 ∈ H with 〈x0, y0〉 = 1 and
define a map T : H → H by

Tx = σ(x⊗ y0)x0

for arbitrary x ∈ H.

Claim 1. σ(A) = TA = AT for each A ∈ B(H).
For any A ∈ B(H), we have

σ(Ax⊗ y0) = σ(A)x⊗ y0 = Aσ(x⊗ y0).

Applying this equation to x0, we arrive at

TAx = σ(A)x = ATx

for all x ∈ H. Consequently, TA = σ(A) = AT .

Claim 2. T is linear.
By the definition of T , for any x, y ∈ H and α, β ∈ F, we have

T (αx+ βy) = σ((αx+ βy)⊗ y0)x0

= σ((αx+ βy)⊗ y0 · x0 ⊗ y0)x0

= (αx+ βy)⊗ y0σ(x0 ⊗ y0)x0

= αx⊗ y0σ(x0 ⊗ y0)x0 + βy ⊗ y0σ(x0 ⊗ y0)x0

= ασ(x⊗ y0 · x0 ⊗ y0)x0 + βσ(y ⊗ y0 · x0 ⊗ y0)x0

= ασ(x⊗ y0)x0 + βσ(y ⊗ y0)x0

= αTx+ βTy.

Claim 3. T is bounded.
Let {xn} ⊆ H be an arbitrary sequence with xn → x and Txn → y as n → ∞.

Using the fact that xn ⊗ y0 → x⊗ y0 as n→∞, we have

y = lim
n→∞

Txn

= lim
n→∞

σ(xn ⊗ y0)x0

= lim
n→∞

σ(xn ⊗ y0 · x0 ⊗ y0)x0

= lim
n→∞

xn ⊗ y0σ(x0 ⊗ y0)x0

= x⊗ y0σ(x0 ⊗ y0)x0

= σ(x⊗ y0 · x0 ⊗ y0)x0

= σ(x⊗ y0)x0

= Tx.

By Closed Graph Theorem, we can infer that T is bounded.

Claim 4. T = λI for some λ ∈ F.
Note that the center of B(H) is FI. Now, it follows from Claims 1-3 that there

exists a scalar λ ∈ F such that T = λI.
�

Theorem 2.13. Let AlgN be a nest algebra in a Hilbert space H with dimH > 1.
Suppose that map σ : AlgN → AlgN satisfies

σ(AB) = σ(A)B = Aσ(B)
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for any A,B ∈ AlgN , then σ is of the form σ(A) = λA for some λ ∈ F. Moreover,
σ is automatically linear.

Proof. Case 1. N is a trivial nest; that is N = {0, I}. Then AlgN = B(H). It
follows directly from Lemma 2.12.

Case 2. N is nontrivial, i.e., there is P ∈ N\{0, I}. Then by [3], AlgN can be
viewed as a triangular algebra

AlgN =

[
Alg(PNP ) P (AlgN )(I − P )

0 Alg((I − P )N (I − P ))

]
.

Thus, by Theorem 2.10, there exist a λ ∈ F such that σ(A) = λA for any A ∈ AlgN
since Z(AlgN ) = FI. Now, the automatic linearity of σ is obvious. �

In particular, we have

Corollary 2.14. Let AlgN be a nest algebra in a Hilbert space H over F with
dimH > 1. If σ : AlgN → AlgH is a linear centralizer, then there exists a scalar
λ ∈ F such that σ(A) = λA for all A ∈ AlgN .

As for Lie centralizers on nest algebras, we have the following results.

Corollary 2.15. Let AlgN be a nest algebra in a Hilbert space H with dimH > 1.
Suppose that map δ : AlgN → AlgN satisfies

δ([A,B]) = [δ(A), B]

for any A,B ∈ AlgN , then δ is of the form δ(A) = λA+ τ(A)I, where λ ∈ F and
τ : AlgN → F is a mapping satisfying τ(A+ B) = τ(A) + τ(B) + λA,BI for some
λA,B ∈ F and τ([A,B]) = 0 for any A,B ∈ AlgN .

Corollary 2.16. Let AlgN be a nest algebra in a Hilbert space H over F with
dimH > 1. If δ : AlgN → AlgN is a linear Lie centralizer, then δ(A) = λA +
τ(A)I, where λ ∈ F and τ : AlgN → F is a linear mapping sending commutators
to zero.
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