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Abstract

All the stages of phase transformations in materials, nucleation, growth, and coarsening, are subject to thermal effects that stem from the
redistribution of energy in the system, like release of latent heat, and heat conduction. The thermal effects change the rate and outcome of the
transformation and may result in the appearance of unusual states or phases, in particular in nanosystems. This review will cover the attempts
of researchers to build a comprehensive theory of thermal effects in different phase transformations. Although the dynamical Ginzburg–Landau
(continuum) approach will be used for the analysis of the effects, they are robust and conceivably independent of the theoretical method employed.
On general physical grounds a possibility of an oscillatory regime in nucleation is considered and evolution equations for the interfacial motion
are derived. The equations show that there are two distinctly different sets of thermal effects of interface motion: one set originates from the
existence of the Gibbs–Duhem thermodynamic force on the interface, which has opposite directions compared to the velocity of the interface in
the cases of continuous and discontinuous transitions, resulting in a heat trapping effect for the latter and a drag effect for the former. The other
set of thermal effects stems from the existence of the surface internal energy and the necessity to carry it over together with the moving interface.
As a result, temperature double layers accompany moving domain boundaries after a continuous transition or the surface creation and dissipation
effect appear after a discontinuous one. An unusual, novel phase that may appear in isolated nanosystems (adiabatic nanophase) is described.
Several experiments are suggested for the verification of the thermal effects in different material systems.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Phase transformations in materials occur due to symmetry
changes as a result of changing external conditions, tempera-
ture, pressure, or chemical potential, and are among the most
important factors that influence properties of materials. The
‘purpose’ of the transformations is to achieve thermodynamic
equilibrium in the system under the new external conditions.
Depending on the type of symmetry changes in the system,
there can be identified two types of transformations: discontin-
uous (first-order) and continuous (second-order), which differ
in dynamics and final outcome. A discontinuous phase transi-
tion is manifest by a finite discontinuity in the first derivatives
of the appropriate thermodynamic potential, while continuous
transitions correspond to singularities in the second derivatives.
Continuous transitions are generally characterized by a loss of
orientational or translational symmetry elements when different

∗ Tel.: +1 910 672 1449; fax: +1 910 672 1159.
E-mail address: aumantsev@uncfsu.edu.

structural variants are possible in a transformed material, for ex-
ample, domains of different orientation after an order–disorder
transition or domains of different magnetization after a ferro-
magnetic transition.

Phase transformations may be conventionally broken into
three stages: nucleation, growth, and coarsening. Nucleation
is a general term reserved for the initial stages of phase
transformations when a new, incipient phase just emerges in the
parent material as a result of thermal fluctuations. On the stage
of growth, already coexisting phases separated by interfaces
grow at the expense of each other. An interface is an important
paradigm in science that helps understand many seemingly
unrelated physical situations. Interfaces comprise layers of
rapid variations of material’s properties and constitute structural
defects. Two distinctly different types of interfaces may be
identified in the above described transformations: homophase
boundaries, which appear after a continuous phase transition
and separate two bulk pieces of the same phase with the same
composition, e.g. antiphase or magnetic domain boundaries;

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
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and heterophase boundaries, which appear as a result of a
discontinuous phase transition and separate phases of different
crystalline symmetry, e.g., solid/liquid or austenite/martensite
boundary. Because of the global disequilibrium of a defective
system, a network of interfaces exhibits structural coarsening
or time evolution of the interface density. Coarsening is a slow
mechanism of establishing global equilibrium with a complete
phase separation. On the stage of coarsening the structure of
the transformed material changes to fully satisfy requirements
of equilibrium thermodynamics.

All stages of phase transformations are subjected to thermal
effects, which stem from the necessity to redistribute internal
energy in the material that undergoes the transformation
and may change its dynamical course. Some of the effects
are caused by the variation of material properties as a
result of temperature gradients that develop during phase
transformations, e.g. thermal stress due to thermal expansion
or effects associated with the temperature dependence of
the coefficient of thermal conductivity. These effects are
not considered in the present review, which is devoted to
the thermal effects related to the latent heat release and
redistribution. The most prominent thermal effects of this
nature are dendritic pattern formation during crystallization
of pure substances and recalescence during crystallization
of alloys. However, these effects are not considered in the
present publication because they have been extensively covered
in the literature before [1]. Instead, the attention is paid to
other, less studied, effects, which change not only the rate
but sometimes even the course of a transformation and may
result in appearance of unusual equilibrium states or phases;
they have come to the attention of the scientific community
only lately. One of the purposes of this review is to build a
comprehensive theory of various thermal effects on different
stages of transformation processes. Many workers have noticed
the thermal effects in numerical simulations of non-isothermal
transformations and even devised rather sophisticated tools
to suppress them [2]. This fact adds to the urgency of a
comprehensive theory, which is the subject of the present
review. Another purpose of this review is to bring these
effects to the attention of experimenters and motivate them on
conducting new experiments in the area of phase transitions.

Thermal effects are robust and conceivably independent of
the theoretical method employed for analysis, see Section 2.
In the present paper we will not be concerned with specific
model systems or types of transitions. Rather, we will
concentrate on the general picture of phase transformations
and try to classify on a comprehensive diagram in the
plane of material’s parameters different thermal effects,
which may manifest in completely unrelated situations. The
thermal effects of nucleation are considered in Section 3.1.
Numerous thermal effects of interface motion are discussed in
Section 3.2. Thermal effects of coarsening are considered in
Section 3.3. Equilibrium thermal effects consist in appearance
of new equilibrium states or phases and manifest in closed
thermodynamic systems where energy is specified and
conserved as opposed to an open one. Inhomogeneous in
temperature equilibrium states are considered in Section 4.1.

In small (nano)thermodynamic systems the size and energy
constrains push the system into another type of a very unusual
state, adiabatic nanophase, see Section 4.2. The feasibility of
experimental detection of the thermal effects will be discussed
in Section 5.

2. Continuum theory of phase transitions

Arguably, the most convenient way of addressing a general
problem of transformations in materials is the Landau paradigm
of the continuum theory of phase transitions where one assumes
that the free energy, in addition to temperature T , pressure
and composition, is a continuous function of a set of internal
parameters {ηi } associated with the symmetry changes, which
are usually called the long-range order parameters (OP) [3].
The concept of the order parameter helps one to define a phase
as a locally stable state of matter homogeneous in the OP’s.
Different transitions may be laid out into the same framework
if proper physical interpretations of OP’s are found. We restrict
the present paper to the case of a one-component system with
a scalar OP, η. Quantitative development of the continuum
method originates from a seminal paper by van der Waals [4],
where he commenced a systematic study of heterogeneities in
thermodynamic systems. Later, Landau [5] considered small
heterogeneities in a crystal near the Curie point during X-
ray scattering. All cases of phase transformations presented
in this paper will be treated here on the common grounds
of the dynamical Ginzburg–Landau theory where different
transitions correspond to different order parameters in the free
energy functional [6]. In the past decade the continuum (field
theoretic) method has become very popular in theoretical and
computational studies of very different phase transformations
in materials: crystallization of pure substances and alloys,
precipitation in the solid state, spinodal decomposition, and
martensitic transformation [7]. The success of the method is
due to its computational flexibility and ability to transcend
the constraints of spatial/temporal scales, imposed by strictly
microscopic or macroscopic methods, hence becoming a truly
multi-scale one with significant predictive power.

2.1. Free energy

Thermodynamic formulation of the theory may be based
on a phenomenological expression of entropy of the system
as a function of its energy and OP, as it has been done in
Ref. [52]. However, we believe that the approach that introduces
a phenomenological free energy of the system as a function of
its temperature and OP is intuitively more sound and presents
more theoretical advantages. As a continuous function of its
variables the free energy density f (T, η) can be expanded
in powers of the OP where only terms compatible with the
symmetry of the system are included [3]:

f (T, η) = f0(T ) +
1
2

aη2
+

1
3

bη3
+

1
4

cη4
+ · · · . (1)

The presence of defects (second phase, interfaces) makes the
system essentially inhomogeneous even at equilibrium that is,
there appear gradients of OP. There is a certain penalty on the
inhomogeneous system in the form of the “gradient energy”
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contribution and the free energy of the entire system should be
taken in the functional form:

F =

∫ {
f (T, η) +

1
2
κ(∇η)2

}
d3x . (2)

Here the gradient energy is represented in the standard
Ginzburg–Landau–Cahn–Hilliard form [5,6,8] and κ is called
the gradient energy coefficient. Notice that, in compliance with
the Zeroth law of thermodynamics, the expression for the free
energy functional cannot include gradients of temperature.

Given the free energy as a function of temperature one
can find entropy S and energy E applying the Legendre
transformation:

S = −

(
∂ F
∂T

)
η

=

∫
sd3x; E = F + T S =

∫
ed3x . (3)

For equilibrium in an open system it is necessary and
sufficient that the variation of its free energy shall either vanish
or be positive, δF ≥ 0, for all possible variations of the state of
the system, which do not alter its temperature. In the framework
of the continuum theory the condition of equilibrium takes the
form of the Euler–Lagrange equation:(

δF
δη

)
T

≡

(
∂ f
∂η

)
T

− κ∇
2η = 0; T = const. (4)

Eq. (4) means that the equilibrium states ηE
= Ξ (T ) are the

extremals of the free energy functional, Eq. (2).
The homogeneous part of the equilibrium set ηE

= Ξ (T )

must have at least two minima, η1 and η2, corresponding to
stable phases, separated by a maximum, which corresponds to
an unstable equilibrium state, ηt , called transition state, Fig. 1.
A few important parameters may be defined for the system: the
equilibrium temperature TE , the activation barrier height B, and
the latent heat L of transformation:

f (TE , η1) = f (TE , η2);

B ≡ f (TE , ηt ) − f (TE , η1);

L ≡ |e(T, η1) − e(T, η2)| .

(5)

The coefficients a, b, c of the free energy, Eq. (1), reflect
important symmetries of the transition and are commonly taken
in the Landau approximation where the first one is linearly
proportional to the deviation from the critical (spinodal)
temperature TC , a(T ) = a0τ with τ ≡ (T − TC )/TC , and
b, c are temperature independent. The free energy of a system
undergoing a continuous transition must be an even function
of OP because the two equilibrium states are indistinguishable,
i.e. two variants of the same phase. This makes the odd-
term coefficient b in Eq. (1) vanish. Then, above the critical
temperature TC (τ > 0), the homogeneous part of the
equilibrium set ηE

= Ξ (T ) is reduced to only one stable state,
viz. disordered phase α with ηα = 0. Below TC (τ < 0)
this set consists of two stable ordered variants of the same
phase, β and γ , with η

β
γ = ±

√
−τ and the unstable disordered

(transition) state ηα = 0, Fig. 2(a). Equilibrium between two
ordered variants, β and γ , is possible at any temperature and
the latent heat is zero. In discontinuous transitions b 6= 0 and

Fig. 1. Free energy density of a system that can undergo a phase transition
as a function of an order parameter. Curves a, b, c correspond to different
temperatures: (a) TC < T < TE , (b) T = TE , (c) T > TE . Only a (b)-type
curve will be realized for a continuum transition.

the equilibrium set ηE
= Ξ (T ) consists of phases with different

symmetries, disordered with ηα = 0 and ordered with ηβ(T ),
separated by the transition state ηγ (T ), which is unstable above
TC but gains thermodynamic stability below TC , Fig. 2(b).
The activation barrier B exists at all temperatures above the
spinodal one, see Fig. 1, the latent heat L does not vanish, and,
in accordance with the Gibbs phase rule, the thermodynamic
equilibrium between β and α phases is achieved at the specific
temperature TE only, see Fig. 2(b).

2.2. Interface

Coexistence of two phases at equilibrium entails a transition
region between them, called an interface, which represents
one-dimensional (1D) translation invariant inhomogeneous
solutions of the equilibrium set ηE

= Ξ (T ), Eq. (4). As
known [9,10], all properties of an interface at equilibrium in a
one-component medium may be completely determined by just
one intensive quantity, the surface tension or surface energy σ

which is defined as the excess free energy of the system with
an interface, per unit area of the interface, compared to that of
the homogeneous bulk ordered or disordered phase occupying
the same volume. Then, using Eqs. (2), (4) and the 1D structure
of the interface, one can obtain an expression for the surface
energy in the continuum representation [8,11]:

σ =

∫
+∞

−∞

κ

(
dη

dx

)2

dx . (6)

The interfacial thickness determines the characteristic length
scale of inhomogeneous solutions and may be defined as
follows [8]:

lI ≡
[η]

max
∣∣∣ dη

dx

∣∣∣ . (7)
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Fig. 2. Homogeneous equilibrium states ηE
= Ξ (T ) for different types of phase transitions. Thick lines—stable states, thin solid lines—unstable states. (a)—

continuous transition, curved line—the temperature double layer δT (η); (b)—discontinuous transition, curved lines—nucleation paths in different systems.

Here and below the quantities in square brackets are defined as
[ϕ] ≡ ϕ+−ϕ− = ϕ(+∞)−ϕ(−∞) and may be called the jump
quantities. Another possibility to define the interfacial thickness
is to calculate the distance between the points where the OP
reaches the levels of 10% and 90% of its maximum value [57];
usually this definition gives practically the same results as that
of Eq. (7).

To elucidate the thermal effects it is advantageous
to introduce another measurable (non-diverging) interfacial
quantity—the relative surface entropy with respect to the
OP [11,12]:

Γs ≡

∫
+∞

−∞

{
s − s+ − (η − η+)

[s]
[η]

}
dx . (8)

One can also introduce the surface entropy χ and surface
internal energy ε as follows:

χ ≡ −
dσ

dT
; ε ≡ σ + T χ. (9)

For continuous transitions Γs = χ for all T ’s. If at equilibrium
an interface exists at a specific temperature only, as is the case
for a discontinuous transition, differentiation in Eq. (9) may be
understood in the sense of disequilibrium because expressions
for the surface energy at equilibrium, Eq. (6), and away from
it coincide [12]. The equilibrium definition of the interfacial
thickness, Eq. (7), may also be extended on non-equilibrium
situations of moving boundaries.

In addition to 1D translation invariant solutions, Eq. (4)
is known to have many different inhomogeneous isothermal
solutions with different symmetries, e.g. cylindrical and
spherical [13], one-dimensional periodic [14], and localized
pulses. However, none of these possess thermodynamic
stability except for 1D translation invariant solutions, which
represent two-phase states.

2.3. Dynamics of phase transformations

Away from equilibrium the thermodynamic system relaxes
back towards an equilibrium state and an evolution equation for
the OP takes the form of the time-dependent Ginzburg–Landau
equation (TDGLE):

dη

dt
= −γ

(
δF
δη

)
T,P

+ ζ(x, t). (10)

A phase transformation is accompanied by energy release and
heat redistribution, which give rise to many thermal effects. In
order to study these effects, naturally, we need heat equation
that accounts for heat releases in the system. Early attempts to
describe thermal effects [53] were based on equations which
were not consistent with the dynamics of phase transitions,
Eq. (10). The issue of thermodynamic consistency for the first
time was raised in Ref. [15] and resulted in derivation of the
following general heat equation (GHE):

C
dT
dt

= ∇(λ∇T ) + Q(x, t) + ξ(x, t)

Q(x, t) = −

(
δE
δη

)
V,T

dη

dt

= −

[(
∂e
∂η

)
V,T

− κE∇
2η

]
dη

dt

κE = κ − T
dκ

dT
.

(11)

Later on other groups [52] approached the same problem
and derived a similar, but not identical equation. A detailed
treatment of this problem and a comparison of different
equations were published in Ref. [12].

In Eqs. (10) and (11) C is the specific heat, λ is the thermal
conductivity, γ is the response coefficient that sets the time
scale of relaxation, Q(x, t) is the density of instantaneous heat
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sources, ζ(x, t) and ξ(x, t) are the sources of Langevin noise
with zero mean and δ-correlation functions.

2.4. Universality classes

The free energy, Eqs. (1), (2) and (5), and the system
of coupling TDGLE (10) and GHE (11) describes non-
isothermal evolution, different regimes of which depend
on the thermodynamic, TE , TC , C, L , B, κ , and kinetic,
λ, γ , properties of materials. Importantly that these eight
properties can be arranged into two dimensionless numbers, the
thermodynamic number U , and kinetic number R, such that the
presence of different thermal effects depends on the magnitudes
of these numbers only. This means that all thermodynamic
systems may be divided into a few universality classes with
similar thermal behavior. Both equations, Eqs. (10) and (11),
are of the diffusion type and are characterized by diffusivities,
Eq. (11) by the thermal diffusivity α = λ/C and Eq. (10) by the
ordering diffusivity m = γ κ . The kinetic number R is defined
as the ratio of these diffusivities:

R ≡
α

m
=

λ

Cγ κ
. (12)

The thermodynamic number U is the ratio of the relevant
energy scales; its definition depends on the type of the transition
in question. For instance, for the discontinuous one it is:

U ≡
CTE B

L2 . (13)

On the other hand, these numbers may be represented as the
ratios of the length scales of the system:

U =
lc
lI

; R =
lµ
lc

lc =
CTEσ

L2 ; lµ =
λ

µ L
; µ =

γ κL
TEσ

(14)

where lC is the capillary length, lµ is the kinetic length, µ is the
kinetic coefficient, and we used the fact that σ/ lI ≈ B, which
can be recovered from Eqs. (4), (6) and (7). Eq. (14) make it
possible to interpret thermal effects as an interplay of different
length scales in the system.

3. Different stages of phase transformations

3.1. Nucleation: Emergence of a new phase

When liquid is cooled down below its freezing point the
conditions for the emergence of solid phase appear. Depending
on the supercooling (supersaturation) of the system emergence
of a new phase may take different routes. As it has been
pointed out by Gibbs, “In considering the changes which may
take place in any mass, we have . . . to distinguish between
infinitesimal changes in existing phases, and the formation of
entirely new phase” [16]. Theoretical methods for the analysis
of this process may also differ depending on the magnitude of
supercooling. At small supercoolings the new phase appears
in the form of small nuclei (droplets) and is characterized by

the nucleation rate that is, the rate of production of droplets
larger than the critical size (those that will grow instead of
decaying back to the old phase). The classical isothermal
theory of nucleation regards a nucleus of a new phase as a
small piece of bulk matter surrounded by a geometrical surface
with a specified surface energy σ [17]. However, even simple
estimates show that the size of the nucleus is comparable with
the thickness of its surface. The continuum method avoids this
problem and allows a deep and comprehensive inquiry into
the problem of nucleation of pure substances and alloys [18].
At large supercoolings the existing phase may reach the point
of overall instability, the spinodal point, below which the
new phase appears everywhere practically at once in various
morphological patterns. The structure of the emerging patterns
may be characterized by the two-point correlation function,
which plays an important role because its Fourier transform, the
structure factor, is directly proportional to the experimentally
measurable scattering intensity [19].

Thermal effects of the emergence of a new phase have never
been a very popular subject in the literature although several
attempts have been made. In their early paper Feder et al. [20]
tried to estimate the effect of dissipation of the latent heat on
nucleation. They found that for a typical case of 2% water
vapor in air the non-isothermal nucleation rate is five times
smaller than the isothermal one. However, a systematic study
of the effects of the latent heat and finite thermal conductivity
on the nucleation rate has not been done yet. Thermal effects in
spinodal decomposition of binary alloys have been considered
in [21].

When a stable phase is quenched deeply into the
vicinity (above or below) of the spinodal temperature
in discontinuous transitions (the so-called non-classical
nucleation) or undercooled below the critical temperature in
continuous transitions, diffuse heterophase fluctuations with
small amplitudes far below that of the level of the new phase
appear in the system. Their ability to grow depends on the
stability properties of the adjacent homogeneous equilibrium
states, which may be studied with the help of the linear dynamic
stability analysis. In Refs. [22,23] was studied evolution
of the small disturbances in the form of harmonic waves,
{1η, 1T } = {Σ ,Θ} · exp(βt + ikx), superimposed on an
equilibrium state in question. Here k is the wave vector of the
permitted perturbations and β(k) is the amplification factor,
which determines the evolution of the structure factor. When
these waves are substituted into Eqs. (10) and (11) as a solution,
they yield two simultaneous equations for the amplitudes {Σ ,
Θ}, which have a solution only if the following solvability
(dispersion) relation is satisfied [23]:

ω2
+ (M − 1)ω + (R + 1)ωq − Rq + Rq2

= 0 (15a)

M =
( f E

ηT )2

f E
ηη f E

T T
. (15b)

In Eq. (15a) the amplification factor β and the wave number k
were scaled as following: β = −γ f E

ηηω, |k|
2

= −( f E
ηη/κ)q. In

Eq. (15b) the functions f E
i j should be taken at the equilibrium

state (not necessarily stable one) and parameter M , called
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Fig. 3. (Color online) The scaled amplification factor ω+ for the most unstable
branch of the dispersion relation, Eq. (15a), as a function of the scaled wave
number q . Parameters: R = 0.5; M = 0.5 (a); 0.75 (b); 1.5 (c).

the interaction module, determines the strength of interactions
between the thermal and ordering modes of the transition. The
interaction module of the disordered state α is zero, which
excludes any thermal effects around this state. The interaction
module of the transition state γ does not vanish and, if
estimated at T = TE ( f E

ηη < 0), the following is true:

Mγ (TE ) ≈
1

7U
. (16)

Thus, as it has been presented in Section 2.4, different regimes
of nucleation in discontinuous transformations are determined
by the numbers R and U .

The dispersion relation, Eq. (15a), is a second-degree
polynomial in two variables whose solutions, as known, are
conics with two branches. Analysis of Eq. (15a) shows that both
branches are real, at least for the real waves numbers q. Many
details of the dynamical nucleation path of the system may
be understood from the analysis of the properties of the more
unstable branch that is, the one with the greater amplification
factor, ω+, see Fig. 3.

Class a: 0 < M < (R + 1)−1, weak interactions. The
uniform mode, q = 0, is the fastest one. This is similar
to the decomposition in an isothermal system with the only
difference that the rate of growth of the modes is determined
by the thermal interactions between them, semi-isothermal
nucleation, see also Fig. 2(b). The mechanism of correlation
of initial fluctuations prevails on early stages and creates
inhomogeneities on the scale of the cut-off wavelength of
instability, q = 1. The rate of growth or decay of all waves,
however, depends on the coefficient of thermal conductivity, λ.
In the limit of λ → ∞ one can recover from Eq. (15a) the
isothermal form of the dispersion relation: β = −γ f E

ηη −m|k|
2.

Class b: (R + 1)−1 < M < 1, medium interactions. The
uniform wavemode is unstable, but the fastest mode has a finite
wave number. Such nucleation regime is more complicated than
Class a as many different modes are active simultaneously,
hybrid nucleation.

Class c: M > 1, strong interactions. The uniform mode is
neutral and the wave number of the fastest mode is finite. Thus
over this range of conditions the system is unstable with respect
to continuous order parameter modulations, see also Fig. 2(b).

Case d: M � 1, very strong interactions. From the
stand point of thermal effects Class d is the most interesting
one and deserves a rigorous study beyond the limit of small
amplitudes. The nonlinear analysis showed that in this case
the growing waves of the new phase obey the nonlinear
Cahn–Hilliard equation from spinodal decomposition, so that
the order parameter manifests temporary conservation law [23]:

dη

dt
=

λ

T ( f E
ηT )2

∇
2
(

δF
δη

)
T,P

. (17)

The mobility of this regime λ/T ( f E
ηT )2 is large and

independent of the relaxation constant γ of Eq. (10), which
means that such decomposition is totally controlled by heat
transfer. The theoretical analysis of this regime motivated
two research groups to conduct full-size nonlinear simulations
of transformation processes in materials at different levels
of instability [22,23]. The simulations revealed a possibility
of oscillatory mechanism in a simple one-component system
when modulations emerge from the finite wavelength instability
of the transition state and create an almost perfect periodic
domain structure in the early stages of decomposition [23].
The oscillatory mechanism is analogous to the spinodal
decomposition in a system with a conserved OP. The difference
is that in the latter case modulations accompany the process
from the beginning to end while in the present case the
modulations of OP field are temporary and that for a system
with a non-conserved OP modulations are governed by energy
conservation instead of mass conservation in the spinodal
decomposition.

3.2. Growth: Dynamics of interfaces

In this section our goal will be to analyze the dynamics
of an interface, which was created as a result of the
nucleation process and continues to move under the influence
of thermodynamic driving forces that still remain in the system.
Consider a transition from one phase to another when the OP
changes its value form η+ to η−, where η± ∈ Ξ (T ). To derive
the equation of motion researchers took advantage of the fact
that the OP changes very rapidly inside the interfacial transition
zone while remaining practically constant or changing very
slowly outside this zone, see Fig. 4. Instead of the Cartesian
coordinate system x = (x, y, z), let’s introduce new curvilinear
time-dependent coordinates {u = U (x, t), v = V (x, t), w =

W (x, t)} such that OP is a function of one coordinate only:
η = η(u) [24,25,15]. One may introduce the velocity of
motion Vn(v, w, t) of the surfaces U (x, t) = const. These
surfaces are equidistant with the radii of curvature ru =

r0(v, w, t) + u, where r0(v, w, t) and K = 1/r0(v, w, t)
are the radius of curvature and the curvature of the surface
U (x, t) = 0, see Fig. 4. Introduction of the time-dependent
curvilinear coordinates has an advantage in that the evolution



Author's personal copy

A. Umantsev / Physica D 235 (2007) 1–14 7

Fig. 4. (Color online) Curvilinear coordinate system (u, v, w) associated with
a moving interface. The Gibbs–Duhem force FG D may be either parallel or
antiparallel to the interfacial velocity Vn depending on the type of interface
heterogeneous (HTI) or homogeneous (HOI).

of the OP field may be described now by the motion of one
surface U (x, t) = 0 in space and time.

If the geometric number of the interface is small enough:

Ge ≡ 2|K |lI � 1 (18)

the free energy change may be separated into volumetric and
interfacial contributions. If in addition to the condition, Eq.
(18), the generalized Peclet number is small:

Pe ≡ lI |Vn|C/λ � 1 (19)

then the temperature distribution is a function of the same
coordinate u also: T = T (u), the quasi-stationary case. In
this case the curvilinear coordinates transform TDGLE (10) and
GHE (11) into ODE’s as follows [12]:

κ

(
d2η

du2 + kη

dη

du

)
−

∂ f (T, η)

∂η
= 0; kη = 2K +

Vn

m
(20)

λ

(
d2T

du2 + kT
dT
du

)
+Vn

{(
∂e
∂η

)
T

− κE

(
d2η

du2 + 2K
dη

du

)}
dη

du
= 0;

kT = 2K +
Vn

α

(21)

where kη may be called the dynamical curvature and kT —the
thermal curvature of the interface.

In order to derive the evolution equation for a piece of
interface we average Eq. (20) over the thickness of the interface
that is, we multiply all the terms of this equation by dη/du and
integrate them over the interval (u−, u+), see Fig. 4. Taking
into account that dη/du vanishes at u− and u+ and utilizing the
relation d f = (∂ f/∂η)dη + (∂ f/∂T )dT we obtain an equation
for the motion of a piece of a phase separating interface:

Vn
σ

m
= −2σ K + [ f ] + s+[T ] + =G D (22a)

=G D ≡

∫ u+

u−

(s − s+)
∂T
∂u

du. (22b)

Eq. (22a) reveals the driving forces on the interface; they
have the units of pressure because they act on a unit area of
the interface. A piece of interface is driven not only by the free
energy difference on both sides of the interface, ([ f ] + s+[T ])
and the Laplacian pressure (−2σ K ), but also by another force,
FG D , Eq. (22b), which vanishes if the temperature in the
transition zone is uniform or the thickness of the latter is zero.
This force was called Gibbs–Duhem force [12,26].

To elucidate the physical meaning of FG D we solve the
quasi-stationary GHE (21) for the temperature gradient inside
the interface using a method of asymptotic expansion. First,
we obtain integral representations of the temperature gradient
when the temperature gradient in the final phase at u = u− is
zero. Then we expand it in increasing powers of the thermal
curvature of the interface kT by integrating this expression by
parts and retain the terms of the order not higher than (lI kT ).
Such an expansion is possible due to conditions, Eqs. (18) and
(19), and may be considered an expansion into “powers of
disequilibrium”. Then the temperature gradient and the entropy
difference in Eq. (22b) can be calculated using the equilibrium
structure of the OP, Eq. (4) (for details see Ref. [12]). This gives
us the expression for the Gibbs–Duhem force:

=G D = −
Vn

λ

(
J1 −

Vn

λ
C J2 − 2K J3

)
. (23)

The coefficients Ji ’s represent different moments of the entropy
density; their exact expressions and values for different types of
interfaces may be found in Ref. [12]. It is instructive, however,
to elucidate the physical nature of the terms in Eq. (23) using
only measurable quantities such as the latent heat L and the
relative surface entropy Γs , Eq. (8). Taking into account that
[s]T E = L/TE one can find that:

J3 ≈ J2 ≈ J1lI ; J1 ≈
TE

lI
Γ 2

s −
lI

6TE
L2. (24)

The type of transition affects the relative magnitudes of
Γs and L , which in turn changes the magnitude of J1 in Eq.
(24): J1 is negative for a typical discontinuous transition and
positive for a continuous transition. This means, see Eq. (22a),
that FG D serves as a driving force in discontinuous transitions
(propels the motion of a heterophase interface) and as a drag
force in continuous transitions (opposes motion of a homophase
interface).

Chain substituting Eq. (24) into Eq. (23) and then into Eq.
(22a) and taking into account that [ f ] + s+[T ] = L(TE −

T−)/TE , we arrive at the evolution equation of interface
motion:

L
TE − T−

TE
= 2σ K + Vn

σ

m

− Vn
lI

λ

(
L2

6TE
−

TEΓ 2
s

l2
I

)(
1 − Vn

ClI

λ
− 2KlI

)
. (25)

The term in the left-hand side expresses the ‘thermal’
driving force on the interface, the first term in the right-
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hand side expresses the Laplacian pressure on the interface
(the Gibbs–Thompson effect), and the last term express the
correction due to Gibbs–Duhem force.

Any heat released at the interface should be removed away
from it by means of thermal conduction mechanism. To obtain
the heat balance equation for a quasi-stationary curved interface
we average Eq. (21) in the interval (u−, u+) [12]:

λ

{[
dT
du

]
+ kT [T ]

}
+ (L − 2εK )Vn = 0. (26)

Eq. (26) differs from the regular heat balance (Stefan) equation
in the terms −2εK Vn and kT [T ]. The first one vanishes for a
flat or immobile piece of interface, i.e. when the interfacial area
does not vary.

Eqs. (25) and (26) identify the local interfacial variables
Vn, K , T−, [T ], [dT/du], and relate them to the thermodynamic
interfacial quantities, L , σ , ε, Γs , lI and kinetic properties of the
medium like α, m. The beauty of these equations is that they are
expressed only through measurable quantities and appropriate
thermodynamic parameters of a system and still are applicable
to many different situations. These equations are independent
of the history of the process and may be used as boundary
conditions in a global problem of structural evolution like that
of dendritic growth in crystallization or domain growth after
continuous ordering. Eqs. (25) and (26) reveal two distinctly
different sets of thermal effects of interface motion which
will be discussed below. One set originates from the existence
of the Gibbs–Duhem thermodynamic force on the interface.
Relative to the velocity of the interface, Vn , this force, FG D , has
opposite directions in the cases of continuous and discontinuous
transitions resulting in the propulsion in the latter and the drag
in the former cases. The other set of thermal effects stems from
the existence of the surface internal energy and necessity to
carry it over together with the moving interface.

3.2.1. Thermal drag
Homophase interfaces (HOI) appear after a continuous

transition, when on both sides of the interface are different
variants of the same phase; antiphase domain boundaries
and magnetic domain walls are examples of HOI’s. Motion
of HOI has been addressed in numerous studies, which go
back to Lifshitz’s seminal paper [27] where he conjectured
a linear proportionality between the speed and curvature of
a moving antiphase domain boundary. Allen and Cahn [25]
used a continuum approach, similar to that of the present
paper to the motion of an isothermal HOI, and, on the premise
of the invariable interfacial profile in the direction of its
motion, showed that a small piece of a gently curved interface,
condition Eq. (18), will move with the velocity Vn = −2mK .
Conventional logic dictates that HOI’s do not cause temperature
gradients and/or thermal effects because the latent heat of the
transformation that generates them is zero. What is overlooked
by such logic is contribution of the surface internal energy
associated with the interface. The influence of the internal
energy excess on the dynamics of HOI was considered in [26]
in the framework of the Onsager theory of linear response;

Fig. 5. Borrow–return mechanism. Internal energy of a substance as a function
of an order parameter.

the analysis showed that such excess slows down the HOI and
causes the thermal drag effect:

Vn = −
2mK
1 + D

; D =
mχε

λσ lI
. (27)

Eq. (27) shows that HOI moves towards the center of its
curvature with a speed which is lower than that predicted by the
Lifshitz–Allen–Cahn theory [27,25] because the Gibbs–Duhem
force is antiparallel to the boundary velocity and plays a role of
a drag force, see Fig. 4. The interfacial dynamics is limited not
only by the mobility of an interface m but also by the thermal
conduction with the drag coefficient D measuring the relative
role of these processes. Notice that Eq. (27) can be derived from
Eq. (25) if one takes into account that L = 0, Γs = χ and ε ≈

TEχ for this type of transition.
The simplified Onsager-type formulation of Ref. [26],

however, did not shed any light on the mechanism of thermal
drag. To explain the drag effect we proposed a borrow–return
mechanism in the framework of the continuum theory [12].
Both variants on either side of the interface are characterized
by the same amount of internal energy density, see Fig. 5.
Transformation inside the interface from one variant to the
other, however, requires crossing the internal energy barrier
(maximum), which corresponds to the disordered phase with
ηα = 0. Then, a small volume of substance must borrow a
certain amount of energy from the neighboring volumes while
moving ‘uphill’ on the internal energy diagram, Fig. 5, and
return it later on the ‘downhill’ stage of the transformation.
The borrow–return mechanism entails the internal energy flux
vector, which requires a transport mechanism, served here
by the heat conduction. Thus the drag effect is due to finite
rate of heat conduction measured by the conductivity, λ.
Thermal drag occurs because the conversion of one variant into
another is accompanied by the transmission of energy between
neighboring pieces of a material, which cannot occur infinitely
fast. Importantly to note again that the thermal drag exists
despite of the vanishing latent heat of the transition, which
causes thermal effects in discontinuous transformations.
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Fig. 6. Temperature waves around homophase interfaces after a continuous
phase transition. Curve 1: λ = 0 (ideal insulator), interface is stationary (ITES).
Curve 2: λ > 0, interface is moving, arrow shows the direction of motion.

3.2.2. Temperature waves
The energy flux through the interface is manifested in the

temperature waves of amplitude [T ], which can be calculated
from Eqs. (26), (27) and (12) assuming that [dT/du] = 0:

[T ] = −
2εK

C(R − 1 + R D)
≈ −2TCχ

m
λ

K ∝ (−τ)1/2 K . (28)

Moving HOI creates a temperature wake. The amplitudes of
the waves are proportional to the curvature of the interface
and critically dependent on the temperature of transformation
because σ ∝

√
−τ 3, see also Eq. (9). The simulation results

in [12] found such temperature waves in the form of double
layers δT of amplitude [T ], see Fig. 6. According to (27),
motion of HOI slows down in a poorly conducting material.
Yet, a more interesting situation happens in an ideal thermal
insulator that is, a material with λ = 0 (see also Section 4.1),
where the HOI creates a temperature double layer and stops
completely (see Figs. 6 and 2(a)). Although stability of curved
HOI’s is quite surprising (recall that critical nuclei in the theory
of discontinuous transformations are equilibrium but unstable
states of the system), it has a simple physical explanation, see
Eq. (22a). ‘Dissolution’ of a small particle of a minority variant
is caused by the Laplacian pressure from the curved interface.
At the same time, the Gibbs–Duhem force generates the thermal
pressure in the particle that opposes the Laplacian pressure. In
the ideal insulator these pressures neutralize each other.

3.2.3. Heat trapping
Heterophase interfaces (HTI) separate contiguous phases of

different symmetries and appear as a result of discontinuous
transitions e.g. solid/liquid or martensite/austenite. Isothermal
effects of HTI motion in the framework of a continuum theory
have been thoroughly investigated in Ref. [24]. Eqs. (25) and
(26) reveal different thermal effects of HTI motion. In the
classical theory there are two different regimes of growth of

a low-symmetry β phase at the expense of a supercooled high-
symmetry α phase (lines 1 in Fig. 7): the diffusion-controlled
regime when the growth velocity Vn decays in time [54]
and the kinetics-controlled regime when Vn has the stationary
value [55]. The former takes place when the initial temperature
of the α phase is T0 > TE − L/C , the latter—when T0 <

TE − L/C [56]. But the temperature of the β phase, T−,
never exceeds the equilibrium temperature: T− → TE in the
diffusion-controlled regime and T− = T0 + L/C < TE
in the kinetics-controlled regime. The latter relation may be
obtained from Eq. (26) applied to a plane interface if the jumps
are calculated between the far-field quantities: in this case
[dT/du] = 0 and [T ] = T0 − T−. The continuum theory
(Eq. (25) and lines 2 in Fig. 7) reveals a possibility to have
the β phase growing (Vn > 0) from the supercooled α phase
even when the temperature of the β phase after transformation
is above the equilibrium value (T− > TE ), e.g. growth of
superheated ice from supercooled water. This effect was called
heat trapping in [28] by analogy with solute trapping. The heat
trapping may happen in a narrow interval of initial temperatures
TE − L/C < T0 < Ttr where the stationary regime of growth
sets in instead of the decaying one. Eq. (25) can be used to
find the condition for the heat trapping to be possible: the
coefficient of the linear in Vn term must be negative. Taking
into account that Γs for discontinuous transitions is small the
following criterion must be fulfilled:

RU =
λ

µLlI
<

1
6
. (29)

Criterion (29) may be considered as the upper limit on the
rate of thermal conduction in the system for the heat trapping
to be possible. Given the definitions of the length scales in
the system, Eqs. (14), criterion (29) may also be interpreted
as that the low limit of the thickness of the interface is six
times the kinetic length. Eq. (22a) points out that the heat
trapping occurs when the Gibbs–Duhem force becomes large
enough to propel an interface against the negative bulk driving
force: ([ f ] + s+[T ]) < 0. The heat trapping effect was first
theoretically predicted in [15]; other workers also noticed this
effect in their theoretical calculations [29]. Recently this effect
was found to be important for shape memory alloys [30] where
it accounts for stick–slip motion of the martensite/austenite
boundaries.

Eq. (25) also points at another situation when the growing
phase may be observed at a temperature above equilibrium
one that is, around regions in materials where the curvature is
negative (the center of curvature is in the parent phase). Such
situation occurs, for instance, in cavities between the branches
of growing dendrites. The difference is that the heat trapping
is capable of producing metastable equilibrium phases while
dendritic overheating is only a transient. Eq. (25) also implies
that the size of the critical nucleus changes in ideal insulators
(the systems with λ →0). However, such systems have not been
studied in depth yet.
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Fig. 7. (Color online) Comparison of the classical and continuum theories
of interface motion in a discontinuous transformation. Lines 1 (blue)—the
classical theory; lines 2 (red)—the continuum theory. (a)—Interface velocity
Vn versus the initial temperature of the α phase; the line 2 is the solution of Eq.
(25) for a plane interface (K = 0). (b)—Final temperature of the β phase T−

versus the initial temperature of the α phase.

3.2.4. Surface creation and dissipation

Another example of a thermal effect comes from the analysis
of the heat balance before and after a HTI sweeps material
during a discontinuous transformation. The amount of heat
released is called the heat of transformation. It is commonly
considered to be equal to the product of the latent heat and
the transformed volume. However, as Eq. (26) demonstrates,
if the moving interface is curved, the heat of transformation
will differ from the above described amount by the amount of
the surface area created or destroyed (

∫
2K Vndvdwdt) times

the surface internal energy ε. This effect, which may be called
the surface creation and dissipation effect, has been noticed by
Wollkind [31] and used in the form of a boundary condition
in one of his later papers. Tiller discussed the surface creation
or destruction effect in his book [32]. However, the theoretical
description of this effect in Ref. [32] was not accurate because
the author attributed it to the evolution equation, similar to
Eq. (25), instead of the heat balance condition, Eq. (26). The
rigorous derivation of the surface creation and dissipation effect
has been given in Ref. [15] and used in Ref. [33] to study
the influence of this effect on the absolute stability of the
solidification front during crystal growth from a hypercooled
melt, i.e. the condition when the front looses dendritic or
cellular structure and restores completely the morphological
stability. The surface creation and dissipation effect destabilizes
the crystallization front because it reduces the amount of heat
released by a growing bump, hence reduces its temperature T−

and increases its velocity Vn , see Eq. (25).

3.3. Coarsening: Approach to equilibrium

It is customary to view coarsening as a curvature-
driven motion. In this case, there would be no coarsening
in 1D systems where all boundaries are flat. In fact,
coarsening is driven by the reduction of surface energy,
which makes coarsening subjected to thermal effects. Analysis
of coarsening scenarios in several closed systems revealed
the mechanism of the sequential doubling of the structural
period (spacing), which is completely different from the
traditional Lifshitz–Slezov–Wagner mechanism of coarsening.
In Ref. [23] a discontinuous phase transformation in a 1D
system was analyzed under conditions of thermal isolation. The
coarsening process was found to start practically immediately
after the emergence of the almost perfect periodic domain
structure and take one of two types of routes: dissolution
of a layer accompanied by a local temperature dip or
coalescence of two neighboring layers accompanied by a
temperature spike. Both types eventually lead to a new
equilibrium state with the double period. The 1D system
under study was not the only example of period doubling
effect during coarsening after discontinuous transformation.
Numerical simulations of dendritic growth showed that the
coarsening process of the sidebranch structure during growth
stage also exhibits mechanism of period doubling [34,35],
which was substantiated by direct experimental observations
of growing dendrites of succinonitrile [36] and ammonium
bromide [37]. When the volume fraction of coarsening domains
is rather high the coarsening process is a result of strong long-
range interaction between them through the temperature field.
Thus the mechanism of sequential period doubling is robust for
coarsening in 1D or quasi-1D (dendritic branches) systems with
a conserved quantity.

4. Equilibrium in closed systems

Equilibrium thermal effects appear in closed systems, where
exchange of energy with the ambience is prohibited. The
problem of equilibrium in closed systems is described by
maximization of the entropy functional for constant energy
functional, see Eq. (3). In mathematical terms, it is formulated
as an isoperimetric problem from the calculus of variations.
Analysis of isolated systems [28,38,39] revealed that almost
all equilibrium states obey the same uniform-temperature
conditions as in open (isothermal) one, see Eq. (4). However,
unlike in the open system where the global thermodynamic
equilibrium is reached at a completely homogeneous state,
in closed systems thermodynamic equilibrium may have a
structure that is, may be a heterogeneous mixture of coexisting
phases of the same temperature, if the total energy of the system
belongs to a certain band [38,39].

4.1. Inhomogeneous in temperature equilibrium states

In addition to common, uniform-temperature equilibrium
states, there exist unique, closed-system equilibrium states,
which are not possible in open ones. These equilibrium states
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Fig. 8. Distributions of temperature (scaled with L/C) and order parameter
as functions of the coordinate u (scaled with lI ) for an inhomogeneous in
temperature equilibrium state (ITES) after a discontinuous transition.

are represented by extremals of the functionals of entropy S and
energy E simultaneously, Eq. (3). Such states are characterized
by a non-uniform temperature distribution and were called
inhomogeneous in temperature equilibrium state (ITES) [28].
For the case of a discontinuous transition ITES represents
a two-phase state of coexistence of the terminal phases, α

and β, the same phases as in the isothermal state. However,
the temperature of the state changes together with the order
parameter (see Fig. 8). Analysis of the thermodynamic stability
of ITES showed that this state is not absolutely stable but of
the saddle-type stability. Nevertheless such states are important
because the system may spend a great deal of time in the
vicinity of the state during a transformation process. ITES can
be achieved in a thermodynamic system with the vanishing
thermal conductivity that is, ideal thermal insulator. Another
example of ITES is the temperature double layer, which may
appear after continuous transformation (see Section 3.2.2 and
Fig. 6). The variational nature of the latter state, unfortunately,
is not known to the author.

4.2. Adiabatic nanophase

Reduction of the size of a thermodynamic system
undergoing a discontinuous transition brings up another
interesting and unusual equilibrium thermal effect. This effect
consists in the stabilization of the transition state γ in very small
particles of some materials. The most striking feature of this
result is that the transition state possesses maximum free energy
among all other homogeneous states of the system at the same
temperature, see Fig. 1. Stabilization of the transition state is a
completely equilibrium effect, which comes about as a result of
two mutually assisting constraints: insulation and confinement.
That is why such state was called the adiabatic nanophase
(ANP) [39]. A thermodynamic stability analysis carried out
in [39] revealed that for the ANP to be possible certain criteria
should be met. On the one hand, the material’s properties should

be restricted to certain values: the thermodynamic number U
must be less than the critical value Ucr ≈ 3/32. On the other
hand, there exists the critical thickness

Xcr ≡
σ

B
(30)

such that in layers of thickness less than the critical X < Xcr
creation of a phase separating interface is not favorable and the
transition state turns into the global optimizer—ANP. Linear
dynamic stability analysis, Eq. (15a), confirms the inference
of the thermodynamic stability of ANP in layers of thickness
X < Xcr. This makes the transition state globally stable not
only with respect to the bulk phases but with respect to the
heterostates also.

5. Experimental verification

In this section we will discuss the possibilities of
experimental verification of the theoretical findings presented
in this review. The problem of practical application of different
thermal effects is more complicated and for the most part will
be left out of the present discussion. As one can see from Eqs.
(25)–(28), dynamical thermal effects are inversely proportional
to the coefficient of thermal conductivity, which greatly reduces
chances of finding such effects in metallic systems where the
thermal conductivity is rather high. However, we expect these
effects to be significant for phase transitions in organic and
colloidal systems, which are becoming a very popular subject
of study now.

5.1. Continuous transitions

In Section 3.2.1 we showed that the heat conduction
in a material that had undergone a continuous transition
causes thermal drag, which is important for the motion of
HOI’s that appear after the transition. This should be taken
into account in experimental verification of the theory of
coarsening of HOI structure albeit thermal drag does not
change time exponents of the latter. According to Eq. (27) the
thermal drag effect consists in slowing down the interface and
becomes significant when number D is comparable to unity; if
D � 1 the thermal conduction becomes the rate controlling
factor. Analysis of the temperature dependence of this number
conducted in [26] shows that it can be represented as follows:
D = D0(−τ)2(β+ν−1) where D0 = mkB/λΩ , kB is the
Boltzmann’s constant, Ω is the atomic volume; β and (−ν)

are the critical exponents respectively of the order parameter
and correlation length near TC . Hence, the thermal drag is
significant if D0 > (−τ)2(1−β−ν), see Fig. 9. Depending on
the critical exponents β and ν two different situations may be
encountered. If (β + ν) ≥ 1 the thermal drag is significant
only when the coefficient D0 > 1; if (β + ν) < 1 the thermal
drag may be significant even when the coefficient D0 < 1. In
the latter case, however, the temperature of the system must
be close enough to the critical one (−τ) < D1/2(1−β−ν)

0 —
critical slowing down. In the case of non-critical slowing down
(β+ν ≥ 1) the thermal drag manifests in the temperature waves
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Fig. 9. Diagram of different cases of the thermal drag effect when (β +ν) < 1.
(1) D < 1, the thermal drag effect is not significant; (2) D > 1, the thermal
drag effect is significant; (3) the critical slowing down: the thermal drag effect
is significant even if D0 < 1.

of amplitude described by Eq. (28), which means that small
bubbles of vanishing variants should “light up” the brightest
before ultimate disappearance. Then Eq. (28) allows us to
estimate the maximum temperature wave amplitude [T ]r that
may be produced by of a bubble of radius r :

[T ]r =
kB TC m
Ωλr

lI (−τ)2(β+ν)−1. (31)

Using very conservative estimates from the available data on
metallic systems, the bubbles of 10−6 m can produce the
waves with amplitudes of 10 ◦C. In physical experiments the
imaging of the temperature waves can be achieved by different
experimental techniques. One possibility is in situ observation
in infrared light. Another possibility is the Mirage technique
measurement, which utilizes the gradients in the index of
refraction of air arising from the temperature gradients induced
by the temperature waves on the specimen surface [40].

5.2. Discontinuous transitions

Existence of different thermal effects in discontinuous
transitions depends on the kinetic and thermodynamic numbers
and may be summarized in the plane (R, U ), Fig. 10.
Different regimes of non-classical nucleation, Classes a, b,
c, d of Section 3.1, find their places in the plane (R, U )

due to relation Eq. (16). The modulation mechanism of
discontinuous transformation represents an alternative to the
classical nucleation and growth for a strongly metastable
system. However, even if the parameters of the system fall
into zone (c) of Fig. 10, achieving the conditions necessary for
such mechanism in a specific system will of course depend on
the ability to suppress competing nucleation during preceding
cooling. Heat trapping regime of interface motion is possible
if condition, Eq. (29), is fulfilled, which is realized below
the hyperbola on the diagram, Fig. 10. Even in this case the

Fig. 10. (Color online) Thermodynamic U and kinetic R properties of different
substances and their predicted thermal behavior in crystallization. Zones: (a)—
weak interactions, (b)—medium interaction, (c)—strong interaction, (d)—very
strong interaction of thermal and ordering modes. ANP is possible in zone (d).
Heat trapping is possible below the hyperbola R = 1/6U (red line).

heat trapping effect will be competing with morphological
instability of the moving interface.

The thermodynamic condition for ANP, U < Ucr ≈ 0.1 [39]
will be fulfilled in zone (d) of Fig. 10. Of course, another
condition, Eq. (30), must also be fulfilled for this phase to be
possible. In small 3-D particles the ANP effect is enhanced by
the dimensionality of the system as compared to the 1-D layers
considered in Ref. [39]. Before the transition the system should
be prepared in the supercooled state and isolated from the
environment after that. Notice that, while heat transfer outside
the system is not permitted, the thermal conduction inside
the system is normal so, that ANP may be found in normal
materials, not only ideal thermal insulators. If one opens the
system up and exposes ANP to the heat exchange with a thermal
reservoir at the same temperature, the delicate balance of such
phase will be destroyed and the equilibrium will be shifted in
the direction of β or α phase. The properties of ANP allow
one to use such materials as sensors of insulation. Analysis of
the diagram in Fig. 10 reveals that from the vantage point of
thermal effects most interesting are materials with small values
of U and R.

The numbers U , R can be estimated only for a handful of
real materials and transformations because the interfacial and
kinetic properties are hard to find in the literature: number R
can be estimated if the kinetic coefficient µ is known, number
U needs the knowledge of σ and lI independently. Kinetic
coefficients, for instance, may be extracted form the comparison
of experimental and theoretical results on dendritic growth [41,
43–46]. The interfacial thickness is the most difficult parameter
to measure even for the most studied transformation that is,
crystallization. Recognition by many researchers that these
parameters are of great importance led to the development
of novel first-principles and molecular dynamics methods that
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Table 1
The melting temperature TE (K ) and thermodynamic U and kinetic R numbers
for different elements and substances in crystallization

Quantity Substance TE (K) U × 102 R References

Aluminum 939.30 7.03 1.38 [47]
Cobalt 1765.15 1.77 5.78 [41]
Copper 1356.15 4.55 59.0 [41]
Helium 35.04 0.186 21.6 [45]
Nickel 1725.15 14.5 40.4 [41,42]
Lead 600.65 7.70 501 [46]
Phosphorus 317.10 12.6 7.19 [43]
Silver 1234.15 6.37 113 [41]
Succinonitrile 331.24 53.6 24.8 [44]

allow to estimate these parameters numerically [47,57]. In
Table 1 one can find numbers U and R for crystallization
of some elements and substances. The solid/liquid interfacial
thickness was estimated here as 1 nm for all materials.
The substances, which are the best candidates for thermal
effects are also labeled on Fig. 10. Juxtaposition of the real
material properties with the theoretical calculations in Fig. 10
shows that the most interesting effects such as continuous
modulations, heat tapping, or adiabatic nanophase are possible
for crystallization of some of these substances.

Actually, it is quite possible that examples of ANP
have already been seen in different experimental systems
without clear recognition of this fact. Kajiwara, Ohno, and
Honma [48] studied martensitic transformation in nanoparticles
of pure Co and Co–Fe alloys. They found that, instead of
a stable bulk phase (4H), a previously unknown phase (2H)
forms in the nanoparticles when they are rapidly cooled in
vacuum. To interpret these experimental results Suzuki and
Takahashi [49] numerically studied the nucleation mechanism
in adiabatic martensitic transformations in crystals composed
of particles interacting with 12–6 or 8–4 Lennard–Jones
potentials. They observed that in large volumes the bcc lattice
always transformed through a martensitic transformation into
one of the mechanically stable, fcc or hcp, structures. In small
volumes (diameter < 100 nm) the same transformation took
place only with the 12–6 potential, while the 8–4-type lattice
did not exhibit a martensitic transformation and remained
bcc. Stability of bcc structure in confining geometries, which
remained unexplained in Ref. [49], may be understood if we
assume that bcc phase is ANP. Indeed, mechanical instability
of the bcc lattice occurs because the elastic stiffness of this
structure is negative for both types of potentials [50]. As strain
is the transition parameter for martensitic transformations, fηη

plays the role of the elastic stiffness and the bcc structure
may be interpreted as the transition state γ between two stable
configurations, α and β (fcc and hcp). Mechanical calculations
of [50] show that the absolute value of the 12–6-type lattice
elastic stiffness is approximately seven times greater than that
of the 8–4 lattice, that is U12-6 ≈ 7U8-4 because U ∼ | fηη|, see
Eqs. (15b) and (16). Therefore, we find that the first condition
of ANP stability, U < Ucr, may be satisfied for 8–4-type lattice
and not satisfied for 12–6 one because the isothermal stiffness
of the latter is “too negative”.

Another example of ANP may be found in the study
by Kim, Lin and Kelly [51] of solidification of submicron
droplets, 10–60 nm, of high purity elemental metals by
electrohydrodynamic atomization in vacuum when droplets
solidify in the free flight. They found that under extreme
conditions of high cooling rates and very small liquid volumes
some pure metals solidified from the melt as an amorphous
phase and that the critical size increased with decreasing
melting temperature of each bcc metal except iron. The
combination of high cooling rates and small volumes of
particles as the necessary conditions for amorphization allows
us to interpret the amorphous phase as ANP. Then the
magnitudes of the thermodynamic number U for pure metals,
Eq. (13) and Table 1, explain why some of them do exhibit
amorphous states and some don’t.
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