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�Received 13 June 2006; accepted 3 November 2006; published online 19 January 2007�

We introduced a continuum method for modeling of intermediate phase growth and numerically
simulated three common experimental situations relevant to the physical metallurgy of soldering:
growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and
growth of the compound from limited amounts of liquid solder. We found qualitative agreements
with the experimental regimes of growth in all cases. For instance, the layer expands in both
directions with respect to the base line when it grows from solid solder, and grows into the copper
phase when the solder is molten. The quantitative agreement with the sharp-interface approximation
was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point
of turnaround when the compound/solder boundary changed the direction of its motion. Although
such behavior had been previously observed experimentally, the simulations revealed important
information: the turnaround occurs approximately at the time of complete saturation of solder with
copper. This result allows us to conclude that coarsening of the intermetallic compound structure
starts only after the solder is practically saturated with copper. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2424530�

I. BACKGROUND

A. Experiment

Physical metallurgy of soldering presents many interest-
ing problems: transformations in the solder, transformations
in the contacts, and mechanical and electrical properties of
the joints.1 One of the problems that is critical for soldering
industry is the formation and growth of an intermediate
phase between the solder and the contact. The occurrence of
an intermediate phase near 50 at. % of Sn in the Cu–Sn sys-
tem at temperatures below 415 °C was observed in 1904.2

This transformation was found to be associated with signifi-
cant amount of heat of formation �first-kind transition�, but
details regarding the nature of the phase mostly have been
unknown at the time. Later on this phase �� phase� was
identified as an intermetallic compound �IMC� Cu6Sn5.3 The
compound Cu6Sn5 undergoes another phase transformation
at approximately 189 °C, which was identified as a second-
kind order-disorder transition ��↔��� associated with the
formation of a long-period superlattice.

The compound grows in the form of a layer with mor-
phology strongly dependent on the temperature of soldering:
Onishi and Fujibuchi4 showed that the growth of IMCs from
solid-state Cu–Sn diffusion couples results in a relatively
planar layer of IMC. However, observations of the interme-
tallic growth in the solid-Cu�Ni�/liquid-Sn system �above the
melting point of the solder� instead of a smooth layer always
show rough, strongly undulated compound layers with scal-
lops of the intermetallic phase.5–7 With time scallops grow
larger but fewer, indicating that the coarsening process takes
place.6,7 The problem of IMC layer growth has many chal-
lenges, the reasons for roughness and coarsening, to name

only a few. To describe this process Kim et al.6,8 suggested a
two-flux nonconservative Ostwald ripening model based on
the assumption of rapid dissolution of Cu into the liquid
solder. Hayashi et al.5 suggested the fast dissolution of
Cu6Sn5 along the grain boundary as the reason for scallop-
edge appearance. However, the suggestion of the predomi-
nant dissolution in the system remained unsubstantiated.
Boettinger et al.9 studied the effect of thickness of Sn–Pb
eutectic solders on IMC growth and dissolution of copper.
The authors found that the dynamics of IMC/solder bound-
ary was nonmonotonic: the boundary moved in the direction
of the substrate for some time that depended on the thickness
of the solder before turning in the direction of the solder.

To resolve the problem of the mechanism of IMC layer
formation and growth, Lord and Umantsev10 conducted an
experiment with the intent to capture the growth on the very
early stages. Fast dipping and pulling of a copper coupon in
liquid solder allowed the workers to study motion of the
boundaries of the layer relative to the original solder/contact
interface, the base line. On the basis of the experimental
results the authors concluded that the growth of IMC layer
from molten pure-Sn solder proceeds by the creation-
dissolution mechanism �CDM�: the leading edge of the IMC
moves into the substrate and creates the compound, while the
trailing edge, moving in the same direction but slightly
slower, dissolves the newly formed compound. The small
difference in the leading and trailing edge velocities entails
the rate of growth of the IMC layer. Lord and Umantsev
identified the dissolution of the grain boundaries as the pri-
mary reason for the formation of undulations of the IMC
layer in the form of scallops and confirmed the suggestion
made in Ref. 5. Quantitative analysis of the growth rates of a
continuous IMC layer showed that the early stages are con-
trolled by the kinetics of dissolution of the copper, with the
kinetic coefficient of dissolution of copper in pure tin beinga�Electronic mail: aumantsev@uncfsu.edu
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�1 mm/s mfr. On the basis of this analysis and other litera-
ture Lord and Umanstev introduced a hypothesis that coars-
ening of IMC layer starts around the time of saturation of the
solder.

B. Theory

For better understanding of physical metallurgy of inter-
mediate phase formation and growth one needs a theoretical
or computational model capable of describing all different
regimes of this process. A number of authors tried to address
the problem of intermediate phase growth in the framework
of a multiphase Stefan problem.11–13 Gibbs derived a system
of two equations for the growth-rate constants and studied
different limiting forms of the solution.12 Although this ap-
proach proved not to describe soldering correctly �e.g., the
thickness of IMC layer growing from the molten solder does
not obey square-root time law7 which follows from the
theory�, it still captures essential physics of the intermediate
phase growth, for instance, different regimes of growth de-
pending on different ratios of diffusion coefficients in solder,
IMC, and copper phases. That is why we extended this
method on a particular case that describes liquid-state solder-
ing and presented the results in Appendix A.

C. Computation

Many problems of soldering may be resolved with the
help of the numerical simulations. Although significant
progress in the problem of solder microstructure formation
and evolution has been made in the past few years,19 the
problem of modeling of IMC growth remains unresolved. A
numerical model capable of reproducing experimental results
on the IMC layer formation and growth is a multifaceted
project with many separate components that affect the out-
come of the transformation. For instance, nucleation of the
intermediate phase or growth of grains, which make up the
layer of IMC, should be included in the dynamical scheme
describing the evolution of the system. However, in the
present publication we disregard the grain structure of the
IMC layer and consider only the one-dimensional evolution
of it from a solid/solid or solid/liquid diffusion couple. Simu-
lation of the full, two—or three-dimensional, structure and
evolution of the growing IMC layer will be addressed in a
following publication. Wherever possible the numerical re-
sults will be compared to the theoretical and experimental
ones. Such models may help in the analysis of many of the
experiments on crystallization, which may be described as
the growth of a layer of intermediate phase between a molten
phase of one composition and solid phase of another compo-
sition �e.g., growth of superconducting layers of MgB2 or
aluminizing treatment of the surface of nickel-base superal-
loys�.

II. CONTINUUM METHOD

A. The free energy of the system

Continuum method has become the method of choice for
modeling of very different phase transformations in the past
decade. The success of the method is due to its computa-

tional flexibility and ability to transcend the constraints of
limited spatial/temporal scales, imposed by strictly micro-
scopic or macroscopic methods, hence becoming a truly mul-
tiscale one. Phase transitions in materials may be character-
ized by one or more coarse-grained continuous variables �l

commonly called order parameters �OPs�, which take on
specified values in the phases of interest, and the densities of
different components, �1, �2, �3 , . . ., which specify the over-
all composition of an alloy. The free energy in the continuum
approximation becomes a functional over the entire system
with the free energy density being a function of these vari-
ables as well as their gradients. Details of the method may be
found in the literature.14–17

We define the process of intermediate phase growth as
simultaneous crystallization plus ordering of a growing
phase. Thus, the thermodynamic system of interest here
should be able to undergo liquid↔solid and order↔disorder
transitions, which may be accompanied by solute redistribu-
tion. Crystallographic analysis shows that the transition from
disordered solid solution �fcc-copper phase� to ordered inter-
metallic compound �� phase� is of the first kind, while the
�↔�� transition at lower temperatures is of the second
kind.3 The latter does not play a significant role in soldering
with molten solders and will not be considered in the present
work; neither will � phase �Cu3Sn� be considered. However,
we would like to notice that extension of the model on �↔�
and �↔�� transitions is straightforward. In the present pub-
lication we consider the case of a binary system, so that the
compositions of both phases may be described by the mole
fraction of the solute, c, instead of the densities of the com-
ponents. Hence, the phase space of the system will include
three coordinates: two OPs representing crystallization, �,
and ordering � and c representing the concentration of solute
�Cu in the present treatment�.

In the following we use the Gibbs free energy in the
so-called square-gradient approximation:

F =� � f�c,�,�� +
1

2
������2 +

1

2
������2�d3x , �1�

with the following expression for the free energy density:

f�c,�,�� = fs�c� + �1/2�a��
2��� + �fc�c� − fs�c������

+ �1/2�a��2��� + �f i�c� − fc�c������ ,

��x� = x�1 − x� ,

��x� = x2�3 − 2x� . �2�

The thermodynamic parameters, barrier heights aq, and gra-
dient energy coefficients �q, q=�, and �, are associated with
the interfacial properties. For the details of the choice of the
free energy density consult Ref. 17.

As one can see from Eq. �2�, the free energy of this type
does not present direct interactions between crystallization
and ordering processes expressed by cross terms of the type
�y�z. In a thermodynamic system described by the free en-
ergy, Eq. �2�, interactions between the processes of crystalli-
zation and ordering proceed indirectly through the concen-
tration field. In the OP plane �� ,�� of the phase space there
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are four points that correspond to equilibrium phases: �s: �
=0, �=0� atomic-liquid solder phase, �c: �=1, �=0� fcc-
solid copper phase, and �i: �=1, �=1� intermediate phase.
The fourth equilibrium point �m: �=0, �=1� may be inter-
preted as a molecular liquid phase with the free energy

fm�c� = fs�c� + f i�c� − fc�c� . �3�

The free energies of the liquid solution, fs�c�, fcc-solid solu-
tion, fc�c�, and intermediate � phase, f i�c�, may be obtained
either from first-principles calculations or from an appropri-
ate database. In this paper the molar free energies of the
phases G��c�, �=c, i, s, at T=275 °C were obtained from
Thermocalc® database.18 They are depicted in Fig. 1 to-
gether with the phase m calculated using Eq. �3�; insert in
Fig. 1 shows the OP plane of the phase space �c ,� ,��. For
the numerical calculations the molar free energies of the
phases were converted into the free energy densities by di-
viding them by the respective molar volumes v�

m.
In the present publication the free energies of phases

were taken in the parabolic approximation

f��c� = f�,0 + f�,1c +
1

2
f�,2c2, �4�

because it greatly simplifies the common-tangent construc-
tion for the determination of the equilibrium phase composi-
tions �details are given in Appendix B�. The free energy co-
efficients, the molar volumes, and the two-phase equilibrium
concentrations are given in Table I. Here and below C�/	

means concentration of � phase in equilibrium with 	 phase
and 	=c, i, s.

B. Dynamics of order parameters and diffusion
of species

If the system is set up in nonequilibrium state, it will be
evolving in the direction of equilibrium due to the presence
of the thermodynamic driving force, which is expressed as
the variational derivative of the free energy. As OPs do not
obey any conservation constrains, their evolution equations
are of relaxational type and are known as the time-dependent
Ginzburg-Landau equations �TDGLEs�,

d�

dt
= − 
�	�F

��



T,P
, �5�

d�

dt
= − 
�	�F

��



T,P
. �6�

Here the response coefficients 
q set the relaxation time
scales �q= �
qaq�−1.

As we pointed out above, the diffusional transformations
are characterized by another set of variables, densities �i,
which also may undergo changes together with the order
parameters. The fundamental difference between the former
and the latter is in the conservation constraints that the den-
sities must obey. This difference is translated into the differ-
ent type of evolution equation, that is, diffusion equation for
the mole fraction of solute,

dc

dt
= ��M�c,�,�� · �

�F

�c
� , �7�

where M is the solute mobility coefficient. The system of
coupling diffusion-type equations, Eqs. �5�–�7�, describes the
dynamics of the system. The temperature of the system will
be assumed as constant.

To account for unequal diffusivities in the liquid, solid,
and intermediate phases, which is critical for the present
treatment, the solute mobility coefficient M must be assumed
to be OP dependent. For a discussion of choices of such
relationships one may consult Ref. 14. In the present study
we are using the following function:

FIG. 1. �Color online� Molar free energies of different phases in the system
obtained from Thermocalc® database: �s� atomic-liquid solution; �c� fcc-
solid solution; �i� intermetallic compound; �m� molecular liquid. Insert: The
order-parameter plane of the phase space of the system.

TABLE I. Bulk-phase material parameters at T=275 °C.

Properties

Phase

Copper �c� IMC Cu6Sn5 �i� Solder �s�

G�,0 �J/mol� −2.8086104 3.1717104 −3.0181104

G�,1 �J/mol mfr� −1.4111104 −2.2886105 −6.7742103

G�,2 �J /mol mfr2� 4.0346104 4.1234105 4.3339104

Molar volume
v�

m �m3/mol�
7.1210−6 117.8710−6 16.310−6

f�,2 �J /m3 mfr2� 0.5671010 0.3501010 0.2661010

Equilibrium 0.976 50 0.616 35
concentrations 0.545 11 0.061 988
C�/	 and C	/� �mfr� 0.369 64 0.174 82
Diffusion coefficients
D� �m2/s�

1.0410−16 5.210−16 5.210−13

�liquid�
Diffusion coefficients
D� �m2/s� �T=220 °C�

1.0410−16 5.210−16 5.210−15

�solid�
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M�c,�,�� = Ms + �Mc − Ms�� + �Mi − Mc�� . �8�

The mobilities of the solder, Ms, copper, Mc, and intermedi-
ate phase, Mi, can be easily recovered if the diffusion coef-
ficients in these phases are known, because

D� = M�f�,2. �9�

Notice that in the present treatment for the mobilities to be
concentration independent we do not need to introduce the
“thermodynamic factor” c�1−c� because the free energies of
phases are taken in the quadratic approximation, Eq. �4�. The
diffusion coefficients used in the present work are given in
Table I.

C. Interfacial material parameters

The parameters, aq, �q, and 
q, are associated with equi-
librium and dynamic properties of the interfaces and should
be identified from experimentally measurable interfacial
quantities. In case of phase transitions in pure materials these
parameters may be obtained from physical or numerical ex-
periments that bring the values of the interfacial energy �q,
interfacial thickness �q, and kinetic coefficient kq,T.
Recently17 the author considered a problem of extracting
these parameters from physical or numerical experiments in
binary or multicomponent alloy systems. He showed that in
the case of a linear system, that is, if f�,2� f	,2� f2, the
barrier-height parameter aq, gradient energy �q, and relax-
ation coefficient 
q may be expressed as follows:

aq = 24
�q

�q
− 4f2�C	/� − C�/	�2,

�q =
3

2
�q�q,


q =
kq,C

6�qf2�C	/� − C�/	�
. �10�

Here kq,C is the solute kinetic coefficient taken from the re-
lation V=kq,C�C�/	−c��, where c� is the actual concentration
in the � phase in front of the interface. As one can see from
Eqs. �10�, in order to obtain the interfacial parameters
�aq ,�q ,
q� of alloys, one still needs the values of the same
interfacial properties ��q ,�q ,kq,C�.

Ravelo and Baskes20 conducted a numerical experiment
and calculated the reversible work required to pull pure solid
copper from pure liquid tin. From this experiment the au-
thors got relatively high values of 0.76–0.89 J /m2 for the
tin-copper solid/liquid interfacial energy at 300 K�T
�1100 K. We believe that such high values of the interfacial
energy appear because alloying was not allowed in the simu-
lations. Lord and Umantsev studied early stages of soldering
reactions and showed that the experimental data on kinetics
of dissolution of copper in tin can be interpreted through a
relationship for the interfacial velocity V=k�,C�Cs/i−cs�. For
the compositional kinetic coefficient they found the value of
k�,C�1 mm/s mfr in the temperature range of 520 K�T
�620 K. Because the experiments were done on the early
stages of the soldering reaction when the IMC layer is very

thin and thus may be ignored, the obtained value of the com-
positional kinetic coefficient can be attributed to the two-
phase solid/liquid Cu–Sn system. As this system satisfies the
conditions of linearity, see Table I, the interfacial parameters
�a� ,�� ,
�� can be calculated using Eqs. �10�; the interfacial
thickness �� was assumed to be equal to 1 nm. The param-
eters �a� ,�� ,
�� may be obtained from the first-principles
calculations or from experimental data on order↔disorder
transition in solid state. Because such data were not available
these parameters were estimated here as a�= �1/2�a�, ��

= �1/2���, and 
�=
�. The calculated material parameters
used for computations are given in Table II.

D. Scaling

As it has been proven many times, numerical calcula-
tions may be done more efficiently, and the results are easier
to interpret if the calculations are performed in scaled units,
with the scales chosen to reflect the physical properties of the
system under consideration. In the present treatment we
choose the following scales:

energy density unit = a� = 1.86  1010 j/m3,

space unit =��

a�

= 0.25 nm,

time unit =
1


�a�

= 0.25 �s. �11�

All the numerical results presented in the next section are in
the scaled units of length and time. Scaling of the diffusion
equation, Eq. �7�, yields the dimensionless diffusion coeffi-
cients in the bulk phases,

Rs =
Ds


���

� 2, Ri =
Di


���

� 2  10−3, �12�

Rc =
Dc


���

� 4  10−4.

Only one-dimensional numerical simulations are presented
in this publication. The straightforward explicit numerical
technique was used to solve the dynamical equation; no an-
titrapping currents were used.

TABLE II. Interfacial material parameters.

Parameter

Transformation

Crystallization ��� Ordering ���

Barrier height �q �J /m3� 1.861010 0.931010

Gradient energy
coefficient �q �J/m�

1.210−9 0.6010−9

Relaxation coefficient

q �m3/J s� �T=275 °C�

2.210−4 2.210−4

Relaxation coefficient

q �m3/J s� �T=220 °C�

2.210−6 2.210−6
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III. NUMERICAL RESULTS

The numerical simulations described in this paper corre-
spond to soldering in a Cu–Sn couple with different amounts
of solder �tin� when the copper part of the couple is placed
on an inert substrate �e.g., computer board�. In the soldering
industry two significantly different situations are usually en-
countered: “solid-state” soldering and “liquid-state” solder-
ing. Experimentally the solid-state soldering is more difficult
to realize due to necessity to establish a completely uniform
contact between the components of the couple. The latter
may be achieved by one of the following techniques: elec-
trodeposition of tin, pretinning of copper, or polishing of
solid parts of the couple and clamping them together. The
technical details of experiments are not important for the
physical metallurgy of the intermediate phase formation and
are not reflected in the simulations presented here. The main
difference between the two situations is the temperature of
the process, which translates into differences of many physi-
cal parameters: physical state and viscosity of the solder, free
energies of the phases, interfacial parameters, etc. However,
by far the greatest effect of the temperature difference is on
the diffusion properties of the solder. Pertaining to the ex-
perimental situations the temperatures that we are reproduc-
ing are T=220 °C for the solid-state soldering and T
=275 °C for the liquid-state one. Otherwise the simulations
are completely isothermal and do not address the problem of
the temperature effect in soldering, which should be a subject
of a separate study.

In the present work the diffusion coefficient in the solder
and both relaxation coefficients were chosen as the param-
eters that distinguish between solid-state and liquid-state sol-
derings, see Tables I and II. In order to compare with physi-
cal experiments, three different cases were numerically
computed: case A: IMC growth from an unlimited amount of
solder with relatively low diffusion coefficient, case B: IMC
growth from an unlimited amount of solder with relatively
high diffusion coefficient, and case C: IMC growth from a
limited amount of liquid solder with relatively high diffusion
coefficient �T=275 °C�. These cases correspond respec-
tively, to the experiments of Onishi and Fujibuchi on solid-
state soldering �case A�, of Lord and Umantsev on liquid-
state soldering with unlimited amount of solder �case B�, and
of Boettinger et al. on liquid-state soldering with limited
amount of solder �case C�. Along with experiments, the re-
sults of numerical simulations with unlimited amounts of
solder �cases A and B� will be compared with the theoretical
results of the three-phase Stefan problem described in Ap-
pendix A.

Temporal behavior of the system was analyzed by calcu-
lating the positions of the interfaces of the IMC layer. The
position of the IMC/solder interface with respect to the sub-
strate, xis, was determined as the numerical integral over the
crystallization OP �, which measures the total amount of the
solid phase �copper phase plus IMC�. The total amount of the
IMC phase, �X=xis−xci, was determined as the numerical
integral over the ordering OP �. The difference between the
two integrals yields the position of the IMC/copper interface
with respect to the substrate, xci. For comparison of the nu-

merical results with the theory, positions of the interfaces
were reckoned with that of the base line, xb, and represented
in the form

X�i � x�i − xb = A�tn�, �13�

while the theoretical results from Appendix A were scaled
and represented in the forms

X�i = B�t1/2, B� = 2	�
Ri. �14�

Comparison was made for n� with 1/2 and A� with B�.
We started with a layer of pure copper, approximately

200 space units thick, “sitting” on the inert substrate and a
layer of pure tin solder of given thickness on top of the
copper. Unlimited amount of solder was modeled by the
thickness of the solder layer greater than the thickness of the
diffusion layer at all times of simulation; when the concen-
tration of Cu on the far end of the solder reached the level of
10−6, the simulation was terminated. To avoid modeling pre-
cipitation of IMC phase, we started with a thin layer of the
compound between significant amounts of pure tin and pure
copper. In order to overcome the collapse of the initial layer
of IMC, its thickness, �X�20 units, was slightly greater
than the sum of the thicknesses of interfaces of this layer
with the bulk phases �for the numerical parameters used in
the present work the thicknesses of interfaces were approxi-
mately seven space units each�. Position of the baseline, xb,
was determined as the average of xis and xci at the beginning
of simulations. Because the precipitation was replaced with
the introduction of the initial layer, the system goes through
the adjustment process first. Adjustment of the interfaces is
very fast, 10–50 time units, while adjustment of the diffusion
field is significantly slower, but was never more that 5% of
the total simulation time. Adjustment periods were included
into the time counts for comparison with the theory.

A. Case A: Solid-state soldering with unlimited
amount of solder

In Fig. 2 concentration c, crystallization �, and ordering
� OP fields are represented at the time t=2.0105. Figure
2�a� shows the distributions of these fields in real space in
the direction perpendicular to the interface. The boundaries
of the IMC layer, xis and xci, move in opposite directions
with respect to the base line, which corresponds to the ex-
periments of Onishi and Fujibuchi. In Fig. 2�b� the same
fields are depicted in the phase space: crystallization OP �
and concentration c as functions of the ordering OP �. Figure
2�b� shows that concentrations in the bulk phases adjacent to
the interfaces closely approach their equilibrium values.

In Fig. 3 are depicted positions of the IMC/solder, xis,
and IMC/copper, xci, interfaces versus time. In the spirit of
Eq. �13� the numerical data on the thickness of the IMC layer
were fitted into the following relation: �X=Acs tncs. The
fitting produced ncs=0.43±0.005 and Acs=0.61±0.01. The
numerical prefactor Acs may be compared with the theoreti-
cal one, Bcs=0.67, obtained from Eq. �A3� using the values
of equilibrium solubilities from Table I. Proximity of the
numerical exponent ncs to 1 /2 and prefactor Acs to Bcs allows
us to consider the bulk diffusion as the rate limiting process
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in solid-state numerical simulations. The quantitative corre-
lation between the theory and experiment has been verified
in Ref. 13.

B. Case B: Liquid-state soldering with unlimited
amount of solder

In liquid-state simulations the system goes through a
substantial self-adjustment process, which ends up with the
formation of a “nucleus” in the form of a thin partially or-
dered layer of solid IMC of composition close to the equi-
librium. With time the IMC layer orders and moves in the
direction of the copper, which means that the molten solder
dissolves the copper phase. In Fig. 4 are depicted spatial
distributions of the ordering OP � and concentration c for the

nucleus after 105 time units, and the layer after a significant
soldering time of 12105 �the distributions of crystallization
OP � is not shown�.

In Fig. 5 are depicted positions of the IMC/solder, xis,
and IMC/copper, xci, interfaces versus time. Comparison
with the theory and experiments was carried out with respect
to the average position of the layer relative to the base line,
Xi= �1/2��Xci+Xis�, and the thickening of the IMC layer, �X.
Thickening of IMC fitted the power law with ncs=0.19 and
Acs=0.95 and did not obey the parabolic law due to strong
interactions between the interfaces through the layer. This
result may be compared with experiments of Gagliano and

FIG. 2. �Color online� Case A: Distribution of concentration c, crystalliza-
tion �, and ordering � OP fields at t=2105. xis and xci are positions of the
boundaries. �a� Spatial distribution of the fields perpendicular to the inter-
face. �b� Distributions of the fields in the phase space.

FIG. 3. Case A: Positions of the IMC/solder and IMC/copper boundaries vs
time.

FIG. 4. �Color online� Case B: Spatial distributions of the ordering OP �
and concentration c fields. �a� Nucleus of IMC at t=105; �b� layer of IMC
after t=12105.
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Fine7 who showed that the thickening of IMC layer follows
the temporal law for �X� t0.2, which is close to the numeri-
cal exponent of ncs=0.19. We do not exclude a possibility
that this is a mere coincidence because the deviation from
the parabolic law in the experiments can be caused by the
factors which were not included in the present model, e.g.,
grain boundary diffusion.

The data on the average position of the layer in Fig. 5
fitted into the parabolic expression, Xi=Ait

1/2, gave the nu-
merical prefactor Ai=0.0994±0.001, which matches closely
the theoretical one, Bi=0.1055, obtained from the CDM ap-
proximation of the three-phase Stefan problem, Eq. �A7�,
using the equilibrium solubilities from Table I. Overall, the
numerical results present at least qualitative agreement with
the experiments of Lord and Umantsev who showed that the
IMC/solder and IMC/copper interfaces move in the direction
of the copper, the creation-dissolution mechanism. Unfortu-
nately the linear regime of CDM was not reproduced numeri-
cally because of the adjustment period, while the parabolic
regime was not reproduced experimentally because the ex-
periments were done on early stages only.

C. Case C: Limited amount of molten solder

In order to study the behavior of the system with limited
amount of liquid solder we computed the model described by
Eqs. �1�–�7� with different thicknesses of the solder phase:
�a� 300, �b� 1300, and �c� 2500 space units. In this series of
numerical experiments the simulations were not terminated
when the concentration of Cu on the far end of the solder
reached the level of 10−6. In Fig. 6 are depicted positions of
the boundaries of IMC layer versus time for three different
initial thicknesses of the solder. Motion of the IMC/copper
boundary is unidirectional towards the copper at all times of
experiments. Motion of the IMC/solder boundary, however,
is non-unidirectional: it starts moving in the direction of the
copper phase but then stops, turns around, and starts moving

in the direction of the solder phase. If the simulations were
continued long enough the molten solder and the solid cop-
per phases would have been completely consumed by the
growing IMC phase. These simulation results are in good
qualitative agreement with the limited amount of solder ex-
periments of Boettinger et al. �quantitative agreement is not
possible here due to different compositions of the solder in
the experiments and simulations�.

In Fig. 6�d� is depicted the distribution of the concentra-
tion field for the initial amount of solder of 2500 space units
at the time t=2.0106, which is around the time of turn-
around. Analysis of this concentration field clearly indicates
that the turnaround occurs when solder reaches practically
complete saturation.

IV. DISCUSSION

We introduced a continuum method for modeling of sol-
dering reaction, which consists of dynamical equations, Eqs.
�5�–�7�, and the free energy expressions, Eqs. �1�–�3�. We
numerically simulated three common experimental situations
relevant to the physical metallurgy of soldering: case A: IMC
growth from an unlimited amount of solid-state solder �rela-
tively low diffusion coefficient�, case B: IMC growth from
an unlimited amount of molten solder �relatively high diffu-
sion coefficient�, and case C: IMC growth from a limited
amount of molten solder. We found qualitative agreement
with experimental regimes of growth in all cases. For in-
stance, the layer expands in both directions with respect to
the base line at low temperatures and grows into the copper
phase at high temperatures. In cases A and B the quantitative
agreement with the sharp-interface approximation was also
achieved. All this makes us believe that the continuum
method may be used for quantitative modeling of an inter-
metallic phase growth from a molten solder. In addition, im-
portant physics of soldering has been learned: we found that
in case C the turnaround of the IMC/solder boundary occurs
approximately at the time of complete saturation of solder
with copper. This result allows us to conclude that coarsen-
ing of IMC structure starts only after the solder is practically
saturated with copper.
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APPENDIX A: THREE-PHASE STEFAN
PROBLEM

In the framework of a three-phase Stefan problem,
growth of an intermediate phase is described by the motion
of two planar boundaries, which clamp the growing IMC
layer. Mathematically, the problem is formulated for the con-
centration field, c�x , t�, which obeys diffusion equations in
the bulk of each phase and two sets of boundary conditions,
equilibrium and flux, at each boundary. For a more detailed
description of a Stefan problem reader should consult the

FIG. 5. Case B: Positions of the IMC/solder and IMC/copper boundaries vs
time.
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literature.11–13 The diffusion equations and boundary condi-
tions may be easily derived as a sharp-interface limit from
the continuum equations, Eqs. �5�–�7�.14–17

The Stefan problem admits similarity solution, that is,
motion of the boundaries with respect to their initial posi-
tions, the base line, is described by the square-root growth
law. In this paper we take this law in the form

X�i = 2	�
Dit, � = c,s , �A1�

where the direction from the base line to the copper phase is
chosen as positive. For the similarity solution �A1� to satisfy
the boundary conditions, the growth-rate constants 	s and 	c

must be determined from the following system of simulta-

neous transcendental equations �see Eqs. �7� and �8� in Ref.
12�:

�Ci

exp�− 	c
2�

erf�	c� − erf�	s�
− �1 − Cc/i�

exp�− 	c
2�Di/Dc��

1 − erf�	c
Di/Dc�

Dc

Di

= �	c�Cc/i − Ci/c� �A2a�

�Ci

exp�− 	s
2�

erf�	c� − erf�	s�
− �Cs/i − C��

exp�− 	s
2�Di/Ds��

1 + erf�	s
�Di/Ds��

Ds

Di

= − �	s�Ci/s − Cs/i� �A2b�

Here C� is the concentration in the solder far from the IMC
layer, which does not change during the process, and �Ci

FIG. 6. Case C: Positions of the IMC/solder and IMC/copper boundaries vs time for different initial thicknesses of the solder: �a� 300, �b� 1300, and �c� 2500
space units. �d� Distribution of concentration in �c� at t=2.0106.
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��Ci/c−Ci/s� is the interval of homogeneity of the interme-
diate phase.

Gibbs12 analyzed the system of equations, Eqs. �A2�, and
found four limiting cases of solutions. One of them, the case
of small growth rates �case D�, is brought up here for pur-
poses of comparison with the numerical results. Gibbs
showed that if

	s,	c �Dc

Di
� 1

and

�Ci�Cc/i − Cs/i − �Ci�
�Cc/i − Ci/c��Cs/i − C��

�
DsDc

Di
,

the system of equations, Eqs. �A2� may be resolved for �	
�	c−	s,

�	 =
�

2

�Ci�Cc/i − Cs/i − �Ci�
�Cc/i − Ci/c��Cs/i − C��

Di

Ds
, �A3�

which is proportional to the rate of IMC layer thickening.
Yet, there is another limiting case of solution of Eqs.

�A2�, important for comparison with the experimental and
numerical simulation results presented in this paper, which
was not analyzed in Ref. 12. This is the case when

1 � 	i �
1

2
�	s + 	c� �Ds

Di
,

�	 �
1

	i
. �A4�

Here 	i is the average growth-rate constant of the interme-
diate phase. Using the properties of the error functions21 one
can find from Eqs. �A2� that

	i�1 − Ci/c� =
�Ci

2�	
, �A5a�

− 	i�Ci/s − Cs/i� =
�Ci

2�	
− �Cs/i − C�� Ds

�Di
. �A5b�

Equations �A5� can be resolved for 	i and �	 as follows:

	i = � Ds

�Di
, �	 =

�Ci

2��1 − Ci/c�
�Di

Ds
,

� �
Cs/i − C�

1 − Cs/i − �Ci
. �A6�

Here � is the undersaturation of the solder. Both interfaces
in this case move in the same direction—towards the copper
phase—with nearly equal, but still slightly different veloci-
ties, which allows for the intermediate phase thickening.
Thus, this case describes the CDM of Lord and Umantsev.
For the average position of the layer Eqs. �A1�, �A4�, and
�A6� yield

Xi � 2	i
Dit =

2
�

�Dst . �A7�

The CDM approximation works if the diffusion in the solder
is much faster than in the intermediate and copper phases,
Ds�Di, Dc, the interval of homogeneity of the intermediate
phase is very narrow, �Ci�1, and the solubility limit in the
solder is very small, Cs/i�1. These thermodynamic and ki-
netic conditions are met in the Cu–Sn solid-liquid diffusion
couple. Notice, however, that CDM does not work for the
case of a saturated solder, �=0.

APPENDIX B: EQUILIBRIUM PHASE DIAGRAM IN
BINARY PARABOLIC SYSTEM

We define a parabolic thermodynamic system as a sub-
stance where the molar Gibbs free energy as a function of
concentrations of its components is described by a polyno-
mial of the second order. We consider here the conditions of
equilibrium coexistence of two phases, � and 	, both of
which are parabolic systems. Additional simplification here
comes from the fact that both phases are formed only by two
species, so that their compositions may be described by the
mole fraction of the solute, c. Then, the coexistence of a
binary parabolic system is described by the molar free ener-
gies of phases in the forms

G� = G�,0 + G�,1c +
1

2
G�,2c2, G�,2 � 0,

G	 = G	,0 + G	,1c +
1

2
G	,2c2, G	,2 � 0. �B1�

The phase diagram of such system consists of the concentra-
tions of the phases, C�/	 and C	/�, that coexist at equilibrium
with each other. The conditions 0�C�/	, C	/��1 must be
imposed separately because the parabolic free energy does
not have singularities at the points c=0 or 1.

Mathematically, coexistence of the phases can be ex-
pressed by the condition of common tangency,22 that is that
the straight line y=kc+ l is the tangent to both curves in Eqs.
�B1� simultaneously. Then we obtain a system of four simul-
taneous equations for four unknowns,

G�,0 + G�,1C�/	 +
1

2
G�,2C�/	

2 = l + kC�/	,

G�,1 + G�,2C�/	 = k ,

G	,0 + G	,1C	/� +
1

2
G	,2C	/�

2 = l + kC	/�,

G	,1 + G	,2C	/� = k . �B2�

Simple algebraic manipulations transform this system into
two equations for equilibrium concentrations only,

�G2�C�/	
2 + 2�G1�C�/	 −

�G1�2

G�,2
+ 2

G	,2

G�,2
�G0� = 0, �B3a�
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C	/� =
G�,2C�/	 − �G1�

G	,2
, �B3b�

where �G��G	−G�. For C�/	 and C	/� to exist the discrimi-
nant D must be positive,

D � �G1�2 − 2�G0��G2� � 0. �B4�

If �G2��0, Eqs. �B3� can be resolved as follows:

C�/	
± =

− �G1� ± �G	,2/G�,2�D
�G2�

, �B5�

C	/�
± =

− �G1� ± �G�,2/G	,2�D
�G2�

.

A particular simple case of a parabolic system with �G2�=0
was previously studied in Refs. 16 and 17 It was named
linear because of the disappearance of the quadratic term in
the equations for the equilibrium concentrations, see Eq.
�B3a�. Physically the linear system describes many cases of
crystallization/melting transition in isomorphous systems. In
this case,

C�/	 =
�G1�
2G2

−
�G0�
�G1�

, C	/� = −
�G1�
2G2

−
�G0�
�G1�

. �B6�
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