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TWO-PARAMETER QUANTUM GROUPS AND
RINGEL-HALL ALGEBRAS OF A∞−TYPE

XIN TANG

Abstract. In this paper, we study the two-parameter quantum
group Ur,s(sl∞) associated to the Lie algebra sl∞ of infinite rank.
We shall prove that the two-parameter quantum group Ur,s(sl∞)
admits both a Hopf algebra structure and a triangular decompo-
sition. In particular, it can be realized as the Drinfeld double of
it’s certain Hopf subalgebras. We will also study a two-parameter
twisted Ringel-Hall algebra Hr,s(A∞) associated to the category
of all finite dimensional representations of the infinite linear quiver
A∞. In particular, we will establish an iterated skew polynomial
presentation of Hr,s(A∞) and prove that Hr,s(A∞) is a direct limit
of the directed system of the two-parameter Ringel-Hall algebras
Hr,s(An) associated to the finite linear quiver An. As a result, we
construct a PBW basis for Hr,s(A∞) and prove that all prime ideals
of Hr,s(A∞) are completely prime. Furthermore, we will establish
an algebra isomorphism from U+

r,s(sl∞) to Hr,s(A∞), which enable

us to obtain the corresponding results for U+
r,s(sl∞). Finally, via

the theory of generic extensions in the category of finite dimen-
sional representations of A∞, we shall construct several monomial
bases and a bar-invariant basis for U+

r,s(sl∞).

Introduction

As generalizations or variations of the notation of quantum groups
[13], several multi-parameter quantum groups have appeared in the lit-
eratures [1, 8, 11, 12, 16, 18, 25, 31, 32]. Let g be a finite dimensional
complex simple Lie algebra. Let us choose r, s ∈ C∗ in such a way
that r, s are transcendental over Q. The study of the two-parameter
quantum group Ur,s(g) has been revitalized in [3, 4, 5, 6, 7] and the
references therein. Note that the one-parameter quantum groups asso-
ciated to Lie algebras gl∞, sl∞ of infinite ranks [17] have been studied
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2 X. TANG

in the literatures [10, 19, 22, 23]. Similar to the case of one-parameter
quantum groups, one might be interested in the constructions of the
corresponding two-parameter quantum groups.

It is the purpose of this paper to study the two-parameter quantum
group Ur,s(sl∞), where the Lie algebra sl∞ consists of all infinite trace-
zero square matrices with only finitely many non-zero entries. We
shall first define such a two-parameter quantum group and then study
some of its basic properties. As a matter of fact, we will formulate
the two-parameter quantum group Ur,s(sl∞) as a limit version of the
two-parameter quantum groups Ur,s(sln+1), n ≥ 1 as studied in [5]. As
usual, we will prove that the algebra Ur,s(sl∞) admits a Hopf algebra
structure and it is the Drinfeld double of its certain Hopf subalgebras.

To further investigate the structure of the two-parameter quantum
group Ur,s(sl∞), we shall study its subalgebra U+

r,s(sl∞) employing the
approach of Ringel-Hall algebras. Note that the Ringel-Hall algebra
approach has found many important applications in the study of one-
parameter quantum groups [15, 20, 21, 24, 26, 27, 28, 29, 30, 34] and the
references therein. To this end, we shall first define a two-parameter
twisted Ringel-Hall algebra Hr,s(A∞) associated to the category of all
finite dimensional representations of the infinite linear quiverA∞. Then
we shall prove that the algebraHr,s(A∞) can be presented as an iterated
skew polynomial ring, and thus construct a PBW basis for Hr,s(A∞).
Furthermore, we shall prove that Hr,s(A∞) is a direct limit of the two-
parameter twisted Ringel-Hall algebras Hr,s(An), n ≥ 1 associated to
the finite linear quivers An, n ≥ 1 (See [24, 33]). As an application, we
prove that all prime ideals of Hr,s(A∞) are indeed completely prime.

To transfer the information to the algebra U+
r,s(sl∞), we will estab-

lish an algebra isomorphism from U+
r,s(sl∞) onto Hr,s(A∞). On the one

hand, such an algebra isomorphism provides a generator-relation pre-
sentation of the two-parameter Ringel-Hall algebra Hr,s(A∞), which
has been defined over a prescribed basis. On the other hand, via
this isomorphism, we can prove that the algebra U+

r,s(sl∞) can be pre-
sented as an iterated skew polynomial ring and it is a direct limit of
U+
r,s(sln+1), n ≥ 1. As a result, we are able to construct a PBW basis

for U+
r,s(sl∞) and prove that all prime ideals of U+

r,s(sl∞) are completely
prime.

To study the Borel subalgebras U≥0
r,s (sl∞) (resp. U≤0

r,s (sl∞)) of the
two-parameter quantum group Ur,s(sl∞), we will define a Hopf algebra
structure on the extended two-parameter twisted Ringel-Hall algebra
Hr,s(A∞) and establish an Hopf algebra isomorphism from the two-

parameter quantized Hopf algebra U≥0
r,s (sl∞) onto Hr,s(A∞). We will
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follow the lines in [15, 34]. This result shall provide a realization of
the whole two-parameter quantum group Ur,s(sl∞) via the double of
two-parameter extended Ringel-Hall algebras.

Note that there exists a Q−algebra automorphism (which will be
called the bar-automorphism) on the algebra U+

r,s(sl∞), which exchanges

r±1 and s±1 and fixes the generators ei. Using the theory of generic ex-
tensions in the category of finite dimensional representations of A∞, we
will construct several monomial bases for the two-parameter quantum
groups following the idea used in [9, 24]. As an application, we will
also construct a bar-invariant basis for the algebra U+

r,s(sl∞) following
[24].

The paper is organized as follows. In Section 1, we give the definition
of Ur,s(sl∞) and study some of it’s basic properties. In Section 2,
we define and study two-parameter Ringel-Hall algebra Hr,s(A∞) and
establish the algebra isomorphism from U+

r,s(sl∞) onto Hr,s(A∞). In
Section 3, we define and study the extended two-parameter Ringel-
Hall algebraHr,s(A∞) and establish the Hopf algebra isomorphism from

U≥0
r,s (g) onto Hr,s(A∞). In Section 4, we use generic extension theory to

construct some monomial bases and a bar-invariant basis for U+
r,s(sl∞).

1. Definition and basic properties of the two-parameter
quantum groups Ur,s(sl∞)

First of all, let us fix some notation. Let r, s be two-parameters
chosen from C∗, such that r, s are transcendental over the field Q and
rmsn = 1 implies m = n = 0. Let us set Z = Z[r±1, s±1] and A =
Q[r, s](r−1,s−1), which is the localization of Q[r, s] at the maximal ideal
(r − 1, s− 1).

Let sl∞ denote the infinite dimensional complex Lie algebra which
consists of all trace-zero square matrices (aij)i,j∈N with only finitely
many non-zero entries. The one-parameter quantum groups Uq(sl∞)
associated to sl∞ were studied by various people in the references [10,
19, 22, 23]. Following a similar idea in [5, 32], we will introduce a
class of two-parameter quantum groups Ur,s(sl∞) associated to the Lie
algebra sl∞.

It is well known that one can also define roots for the Lie algebra
sl∞ as in the finite dimensional case of g = sln+1. In particular, all
the simple roots of sl∞ can be denoted as αi, i ∈ I = N. Accordingly,
all the positive roots of sl∞ are exactly given as αij : =

∑j
k=i αk for

i ≤ j ∈ N.
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Let C = (cij)i,j∈N denote the infinite Cartan matrix corresponding
to the Lie algebra sl∞. Then, we have the following

cii = 2, cij = −1 for |i− j| = 1, cij = 0 for |i− j| > 1.

Let Q(r, s) denote the function field in two variables r, s over the field
Q of all rational numbers. As mentioned early, we may also choose
r, s to be complex numbers which are transcendental over Q such that
r2 6= s2. In the future, more restrictions may be put on the parameters
if needed. Let Q denote the root lattice generated by αi, i ∈ N. Then
we can define a bilinear form 〈−,−〉 on the root lattice Q ∼= Z⊕N as
follows

〈i, j〉 : = 〈αi, αj〉 =

 aij, if i < j,
1, if i = j,
0, if i > j.

The above defined bilinear form is a generalization of the Ringel-
Euler form in the finite case of g = sln+1. In terms of the above defined
bilinear form 〈−,−〉, one can give the following definition of the two-
parameter quantum groups Ur,s(sl∞) associated to the Lie algebra sl∞.

Definition 1.1. The two-parameter quantum group Ur,s(sl∞) is de-
fined to be the Q(r, s)−algebra generated by ei, fi, w

±1
i , w′±1

i , i ∈ N
subject to the following relations

w±1
i w±1

j = w±1
j w±1

i , w′±1
i w′±1

j = w′±1
j w′±1

i ,

w±1
i w′±1

j = w′±1
j w±1

i , w±1
i w∓1

i = 1 = w′±1
i w′∓1

i ,

wiej = r〈j,i〉s−<i,j>ejwi, w′iej = r−〈i,j〉s〈j,i〉ejw
′
i,

wifj = r−〈j,i〉s〈i,j〉fjei, w′ifj = r〈i,j〉s−〈j,i〉fjw
′
i,

eifj − fjei = δi,j
wi − w′i
ri − si

,

eiej − ejei = fifj − fjfi = 0 for |i− j| > 1,

e2
i ei+1 − (r + s)eiei+1ei + rsei+1e

2
i = 0,

eie
2
i+1 − (r + s)ei+1eiei+1 + rse2

i+1ei = 0,

f 2
i fi+1 − (r−1 + s−1)fifi+1fi + (rs)−1fi+1f

2
i = 0,

fif
2
i+1 − (r−1 + s−1)fi+1fifi+1 + (rs)−1f 2

i+1fi = 0.

First of all, we have the following obvious proposition concerning a
Hopf algebra structure of the algebra Ur,s(sl∞).
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Proposition 1.1. The algebra Ur,s(g) is a Hopf algebra with the co-
multiplication, counit and antipode defined as follows

∆(w±1
i ) = w±1

i ⊗ w±1
i , ∆(w′±1

i ) = w′±1
i ⊗ w′±1

i ,

∆(ei) = ei ⊗ 1 + wi ⊗ ei, ∆(fi) = 1⊗ fi + fi ⊗ w′i,
ε(w±1

i ) = ε(w′±1
i ) = 1, ε(ei) = ε(fi) = 0,

S(w±1
i ) = w∓1

i , S(w′±1
i ) = w′∓1

i ,

S(ei) = −w−1
i ei, S(fi) = −fiw′−1

i .

Proof: The proof is reduced to the finite case where g = sln+1,
whose proof can be found in [5]. And we will not repeat the details
here. 2

Let U+
r,s(sl∞) (resp. U−r,s(sl∞)) denote the subalgebra of Ur,s(sl∞)

generated by ei, i ∈ N (resp. by fi, i ∈ N). Let U0
r,s(sl∞) denote the

subalgebra of Ur,s(sl∞) generated by w±1
i , w′±1

i , i ∈ N. Then we shall
have the following triangular decomposition of Ur,s(sl∞).

Proposition 1.2. The algebra Ur,s(sl∞) has a triangular decomposition

Ur,s(sl∞) ∼= U−r,s(sl∞)⊗ U0
r,s(sl∞)⊗ U+

r,s(sl∞).

Proof: Once again, we can repeat the proof used in the case of
Ur,s(sln+1). We refer the reader to [5] for more details. 2

Let us denote by Z⊕N the free abelian group of rank |N| with a
basis denoted by z1, z2, · · · , zn, · · · . Given any element a ∈ Z⊕N, say
a =

∑
aizi, we set |a| =

∑
ai. Note that algebra U+

r,s(sl∞) (resp.

U−r,s(sl∞)) is a Z⊕N−graded algebra by assigning to the generator ei
(resp. fi) the degree zi. Given a ∈ Z⊕N, we denote by U±r,s(sl∞)a the
set of homogeneous elements of degree a in U±r,s(sl∞).

Proposition 1.3. We have the following decomposition

U+
r,s(sl∞) =

⊕
a

U+
r,s(sl∞)a, U−r,s(sl∞) =

⊕
a

U−r,s(sl∞)a.

2

Let us define Uv,v−1(sl∞) to be the specialization of Ur,s(sl∞) for
r = v = s−1. Then we shall have the following similar result as [5],
whose proof is exactly the same as the one in [5].

Proposition 1.4. Assume there exists an isomorphism of Hopf alge-
bras

φ : Ur,s(sl∞) −→ Uv,v−1(sl∞)

for some v. Then r = v and s = v−1.

2
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1.1. A Drinfeld double realization of Ur,s(sl∞). In this subsection,
we show that the two-parameter quantum group Ur,s(sl∞) can be real-
ized as the Drinfeld double of its certain Hopf subalgebras. To proceed,
we need to recall a couple of standard definitions for the Hopf pairing
and the Drinfeld double of Hopf algebras. For more details about these
concepts, we refer the reader to the references [5, 12].

Definition 1.2. A Hopf pairing of two Hopf algebras H ′ and H is a
bilinear form (, ) : H ′ ×H −→ K such that

(1) (1, h) = εH(h),

(2) (h′, 1) = εH′(h
′),

(3) (h′, hk) = (∆H′(h
′), h⊗ k) =

∑
(h′(1), h)(h′(2), k),

(4) (h′k′, h) = (h′ ⊗ k′,∆′(h)) =
∑

(h′, h(1))(k
′, h(2)),

for all h, k ∈ H ′,h′, k′ ∈ H ′, where εH , εH′ denote the counits of H,H ′

respectively, and ∆H ,∆H′ denote their comultiplications.

It is obvious that

(SH′(h
′), h) = (h′, SH(h))

for all h ∈ H and h′ ∈ H ′, where SH′ and SH denote the respective
antipodes of H and H ′.

Let U≥0
r,s (sl∞) (resp. U≤0

r,s (sl∞)) be the Hopf subalgebra of Ur,s(sl∞)

generated by ei, w
±1
i (resp. fi, w

′±1
i ). Assume that B = U≥0

r,s (sl∞) and

(B′)coop is the Hopf algebra generated by fj, (w
′
j)
±1 with the opposite

coproduct to U≤0(sl∞). Using the same proof in the case of sln+1 [5],
we shall have the following result

Lemma 1.1. There exists a unique Hopf pairing B and B′ such that

(fi, ej) =
δi,j
s− r

(w′i, wj) = r<ei,ej>s−<ej ,ei>,

and the pairing takes the zero value on all other pairs of generators.
Moreover, we have (S(a), S(b)) = (a, b) for a ∈ B′, b ∈ B.

2

Therefore, we have the following similar result as in [5].

Theorem 1.1. Ur,s(sl∞) can be realized as a Drinfeld double of Hopf
subalgebras B = U≥0

r,s (sl∞) and (B′)coop = U≤0
r,s (sl∞), that is,

Ur,s(sl∞) ∼= D(B, (B′)coop).
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Proof: First of all, let us define a linear map: φ : D(B, (B′)coop) −→
Ur,s(sl∞) as follows

φ(ω̂±1
i ) = ω±1

i , φ((ω̂′i)
±1) = (ω′i)

±1

φ(êi) = ei, φi(f̂i) = fi.

We need to show that this mapping is a Hopf algebra automorphism.
Obviously, we can still employ the proof used in [5] for the finite case
g = sln+1 and we will not repeat the detail here. 2

1.2. An integral form of the two-parameter quantum group
Ur,s(sl∞). In addition, we also consider an integral form of the two-
parameter quantum group Ur,s(sl∞) and its subalgebras following [20].
Recall that we have set Z = Z[r±1, s±1]. For any l ≥ 1, let us set the
following

[l] =
rl − sl

r − s
, [l]! = [1][2] · · · [l].

Let us define e
(l)
i =

eli
[l]!
, f

(l)
i =

f li
[l]!

. We define a Z−subalgebra Ur,s(sl∞)Z

of Ur,s(sl∞) which is generated by the elements e
(l)
i , f

(l)
i , w±1

i , w′±1
i for

i ∈ I. Similarly, we can define the integral form of U+
r,s(sl∞) and

U−r,s(sl∞). It is easy to see that we have the following

Ur,s(sl∞) ∼= Ur,s(sl∞)Z ⊗Z Q(r, s)

and
U±r,s(sl∞) ∼= U±r,s(sl∞)Z ⊗Z Q(r, s).

In particular, Ur,s(sl∞) (resp. U±r,s(sl∞)) is a free Z−algebra.

2. Two-parameter Ringel-Hall algebras Hr,s(A∞)

To better understand the structure of the two-parameter quantum
group Ur,s(sl∞), it is helpful to study its subalgebras U+

r,s(sl∞) and

(Hopf) subalgebra U≥0
r,s (sl∞). To this end, we shall study these alge-

bras in terms of two-parameter Ringel-Hall algebras associated to the
infinite linear quiver. In this section, we will define and study a two-
parameter Ringel-Hall algebra Hr,s(A∞) associated to the category of
finite dimensional representations of the infinite quiver

A∞ :
1•−→2•−→3• · · · n−1• −→n•−→ · · · .

For n ≥ 1, let An denote the finite quiver

An :
1•−→2•−→3• · · · n−1• −→n•

with n vertices. Let us fix k to be a finite field and let Λn denote the
path algebra of the finite linear quiver An over k. Then Λn is a finite
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dimensional hereditary algebra of finite-representation type. Note that
the category of finite dimensional representations of the quiver An is
equivalent to the category of finite dimensional Λn−modules. We will
denote this category by An−mod. Let us set q = |k| the cardinality
of k, and choose v to be a number such that v2 = q. We know that
Λn is finitary in the sense that the cardinality of the extension group
Ext1(S, S ′) is finite for any two simple Λn−modules S, S ′.

Let us denote by A∞−mod, the category of all finite dimensional
representations of the quiver A∞. Note that the category A∞-mod has
been investigated by Hou and Ye in [14], where they have explicitly
described all finite dimensional indecomposable representations of A∞
and studied the one-parameter non-twisted generic Ringel-Hall algebra
Hq(A∞). Let Si be the simple representation associated to the vertex i
of the quiver A∞ and let Mij denote the indecomposable representation
of A∞ with a top Si and length j − i + 1. It is easy to see that there
is a one-one to correspondence between the set of isoclasses of finite
dimensional indecomposable representations Mij of the quiver A∞ and
the set of positive roots αij for the Lie algebra sl∞.

Concerning the relationship between the categories An−mod and
A∞−mod, we now recall the following result from [14].

Theorem 2.1. (Theorem 1.1 in [14]) The category An−mod can be
regarded as a fully faithful and extension closed subcategory of A∞−mod
and Am−mod for m ≥ n.

2

Based on the above theorem, we know that the extension group
between any two finite dimensional representations M,N of A∞ can be
calculated via regarding M,N as the representations of a certain finite
quiver Am. Therefore, the number of extensions between M,N is still
depicted by the evaluation of the Hall polynomial at q, the cardinality
of the base field. Recall that the two-parameter Ringel-Hall algebra
Hr,s(An), n ≥ 1 associated to the category An−mod has been studied
in [24, 33]. In particular, one knows that Hr,s(An) can be presented as
an iterated skew polynomial ring and its prime ideals are completely
prime. A PBW basis has also been constructed for Hr,s(An) in [33]
as well. In rest of this section, we are going to use a two-parameter
twisted version of the Ringel-Hall algebra Hq(A∞) to study the algebra
U+
r,s(sl∞). Note that this approach is plausible because of the existence

of Hall polynomials in the category A∞−mod. Indeed, we will be
looking at a limit version Hr,s(A∞) of the two-parameter Ringel-Hall
algebras Hr,s(An), n ≥ 1.
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2.1. Two-parameter Ringel-Hall algebra Hr,s(A∞). We will de-
note by P the set of isomorphism classes of finite dimensional repre-
sentations of the infinite quiver A∞. Let us define the subset

P1 = P − 0

where 0 denotes the subset of P consisting of the only isomorphism class
of the zero representation. For any α ∈ P , we choose a representation
uα corresponding to α. We denote by aα the order of the automorphism
group Aut(uα). It is easy to see that the number aα is independent of
the choices of the representatives uα for any α ∈ P .

For any given three representatives uα, uβ, uγ of the elements α, β, γ ∈
P respectively, we denote by gγαβ the number of submodules N of uγ
satisfying the conditions: N ∼= uβ and uγ/N ∼= uα.

Note that it does not make sense to define Ext1(M,N) for any two
given representations M,N of the infinite quiver A∞. Let us denote by
ÊA∞(M,N) the set of all short exact sequences 0 −→ N −→ E −→
M −→ 0. We say two such short exact sequences 0 −→ N −→ E1 −→
M −→ 0 and 0 −→ N −→ E2 −→ M −→ 0 are equivalent if there
exists a homomorphism φ : E1 −→ E2 making the diagram commute.
We denote by EA∞(M,N) the set of all equivalence classes of ÊA∞ with
respect to this equivalence relation. For any given M,N ∈ A∞ −mod,
according to Theorem 1.2 in [14], we can choose somem ≥ 1 such that
there exists a bijection between EA∞(M,N) and Ext1Am−mod(M,N). If
no confusion arises, we will still write EA∞(M,N) as Ext1(M,N).

For any given M,N ∈ A∞ −mod, we define the following notation

〈M,N〉 = dimkHom(M,N)− dimkExt
1(M,N).

Once the representationsM,N are chosen, we can always restrict to a
subcategory An−mod. Since the algebra Λn is hereditary for any n ∈ N,
it is easy to see that for any representations M,N ∈ An − mod, the
value of 〈M,N〉 solely depends on the dimension vectors dimM, dimN
of the An−modules M and N .

Now for any given elements α, β ∈ P , we can define the following
notation

〈α, β〉 = 〈uα, uβ〉
where uα, uβ are any chosen representatives of α, β respectively. It is
easy to see that 〈−,−〉 is a bilinear form.

It is well known that in the category An−mod, there exists a sym-
metry between the objects of An−mod. This symmetry is described by
Green’s formula [15]. In fact, one can also prove that Green’s formula
holds for the objects in the category A∞−mod. Namely, we have the
following result.
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Theorem 2.2. Let α, β, α′, β′ ∈ P, then we have

aαaβaα′aβ′
∑
λ∈P

gλα,βg
λ
α′β′a

−1
λ =

∑
ρ,σ,σ′,τ∈P

|Ext1(uρ,uτ )|
|Hom(uρ,uτ )| gαρσg

α′

ρσ′g
β
σ′τg

β′

στ

aρaσaσ′aτ ′ .

Proof: Since all representations involved in the formula are finite
dimensional representations of A∞, we can choose some positive integer
m such that α, β, α′, β′ and λ can actually be regarded as objects in
the subcategory Am−mod instead. Note that Green’s formula holds
within the subcategory Am−mod. Since the category Am−mod is a
fully faithful and extension closed subcategory of A∞−mod, we know
that Green’s formula holds in A∞−mod. 2

Let Hr,s(An) denote the two-parameter Ringel-Hall algebra associ-
ated to the category An−mod as defined in [24]. In [24], Reineke has
proved that the two-parameter Ringel-Hall algebra Hr,s(An) is isomor-
phic to the algebra U+

r,s(sln+ 1). In the rest of this section, we will
show that a limit version of this statement is still true.

Note that there exist Hall polynomials FL
M,N(x) for M,N,L ∈ An −

mod such that gLM,N = FL
M,N(q), where q is the cardinality of the base

field k. For the existence and calculation of Hall polynomials in An −
mod, we refer the reader to the references [27, 28]. Since each An−mod
is a fully faithful and extension closed subcategory of A∞−mod, the
Hall polynomials exists for objects in A∞−mod, which leads to the
definition of two-parameter Ringel-Hall algebra Hr,s(A∞) below.

Now let us define Hr,s(A∞) to be the free Q(r, s)−module generated
by the set {uα | α ∈ P}. Moreover, we define a multiplication on the
free Q(r, s)−module Hr,s(A∞) as follows

uαuβ =
∑
λ∈P

s−〈α,β〉F uλ
uαuβ

(rs−1)uλ, for anyα, β ∈ P .

It is easy to see that we have the following result.

Theorem 2.3. The free Q(r, s)−module Hr,s(A∞) is an associative
Q(r, s)−algebra under the above defined multiplication. In particular,
the algebra Hr,s(An) can be regarded as a subalgebra of Hr,s(A∞) and
Hr,s(Am) for m ≥ n. In particular, we have

Hr,s(A∞) = lim
n7→∞

Hr,s(An).

Proof: It is straightforward to verify that Hr,s(A∞) is an associa-
tive algebra under the above defined multiplication. Once again, we
can reduce the proof to the finite case thanks to Theorem 1.1 in
[14]. Since each An−mod can be regarded as a fully faithful and ex-
tension closed subcategory of A∞−mod and Am−mod when m ≥ n,
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the algebra Hr,s(An) can be regarded as a subgroup of the algebras
Hr,s(A∞) and Hr,s(Am). Furthermore, one notices that the multiplica-
tion of Hr,s(An) is the restriction of the multiplications of Hr,s(A∞) and
Hr,s(Am). Therefore, the algebra Hr,s(An) can be regarded as a subal-
gebra of Hr,s(A∞) and Hr,s(Am) for m ≥ n as desired. Furthermore,
each element of Hr,s(A∞) can be regarded as an element of a certain
subalgebra Hr,s(Am). Thus we shall have Hr,s(A∞) = limn7→∞Hr,s(An)
as desired. 2

2.2. Basic properties of Hr,s(A∞). Since the category A∞−mod can
be regarded the direct limit of its fully faithful and extension closed
subcategories An−mod with n ≥ 1, any two objects M,N ∈ A∞−mod
can be regarded as objects in a certain subcategory Am−mod. Thus
the extension between any such two objects can be handled in this
subcategory An−mod as well. As a result, it is no surprise that the
algebra Hr,s(A∞) shares many similar ring-theoretic properties with its
subalgebras Hr,s(An). In this subsection, we will establish some similar
results for Hr,s(A∞) without giving detailed proofs. The reader shall
be reminded that all the proofs can be reconstructed the same way as
in the case of a certain subalgebra Hr,s(Am). And we refer the curious
reader to [33] for the details.

First of all, let us fix more notations. For any given α ∈ P , we will
choose an element uα ∈ Hr,s(Λ). We denote by ε(α) the k−dimension
of the endomorphism ring of the representative uα associated to α. For
any given finite dimensional representation M of the infinite quiver A∞,
we will denote the isomorphism class of M by [M ] and the dimension
vector of M by dimM , which is an element of the Grothendieck group
K0(A∞) of the category A∞−mod.

Recall that there is a one-to-one correspondence between the set of
all positive roots for the Lie algebra sl∞ and the set of isoclasses of
finite dimensional indecomposable representations of A∞. Let a ∈ Φ+

be any positive root, we shall denote by M(a) the indecomposable
representation corresponding to a. For any given map α : Φ+ −→ N0

with finite support, let us set the following

M(α) = MΛ(α) =
⊕

a∈Φ+

α(a)M(a).

Then it is easy to see there is a one-to-one correspondence between the
set P of isomorphism classes of all finite dimensional representations
of the infinite quiver A∞ and the set of all maps α : Φ+ −→ N0 with
finite supports. From now on, we will not distinguish an element α ∈ P
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from the corresponding map associated to α, and we may denote both
of them by α if no confusion arises.

For any given α ∈ P , let us set dimα =
∑

a∈Φ+ α(a)a. Then we
shall have following

dimM(α) = dimα.

For any given α ∈ P , we will denote by dim(α) = dim(uα) the
dimension of the representation uα as a k−vector space. Furthermore,
let us set

〈uα〉 = sdim(uα)−ε(α)uα.

For conveniences, we may sometimes simply denote the element uα
by α for any α ∈ P , and denote F uλ

uαuβ
(rs−1) by gλαβ, if no confusion

arises. In the rest of this subsection, we will carry out all the compu-
tations in terms of α. It is obvious that the set {〈α〉 | α ∈ P} is also
a Q(r, s)−basis for the algebra Hr,s(A∞). Note that we have 〈αi〉 = αi
for any given element αi ∈ P corresponding to the simple root αi, i ≥ 1.
As a result, we can rewrite the multiplication of Hr,s(A∞) in terms of
this new basis as follows

〈α〉〈β〉 = s−ε(α)−ε(β)−〈dimα,dimβ〉
∑
λ∈P

sε(λ)gλαβ〈λ〉

for any α, β ∈ P .
In addition, let us denote by

e(α, β) = dimkHomA∞−mod(M(α),M(β))

and

ζ(α, β) = dimkExt
1
A∞−mod(M(α),M(β)).

Recall that Hou and Ye have given an explicit total ordering on the
set of all isoclasses of finite dimensional indecomposable representations
of the infinite linear quiver A∞ and used it to construct a PBW base
for the generic one-parameter Ringel-Hall algebra Hq(A∞). Following
[14], we will order all the positive roots as follows:

a11 < a12 < · · · < a22 < a23 < · · · .

Obviously, we can see that Hom(M(aij),M(akl)) 6= 0 implies aij > akl,
where M(aij),M(akl) are the indecomposable representations corre-
sponding to the positive roots aij, akl respectively. For more details
about the ordering, we refer the reader to [14, 27]. We should mention
that we may write the positive roots as a1, a2, a3, · · · instead.

First of all, we have the following proposition.
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Proposition 2.1. Let α1, · · · , αt ∈ P such that for i < j, we have both
ε(αj, αi) = 0 and ζ(αi, αj) = 0. Then

〈
t⊕
i=1

αi〉 = 〈α1〉 · · · 〈αt〉.

2

Theorem 2.4. Let α, β ∈ P such that e(β, α) = 0, ζ(α, β) = 0. Then
we have the following

〈β〉〈α〉 = r〈α,β〉s−〈β,α〉〈α〉〈β〉+
∑

γ∈J(α,β)

cγ〈γ〉

with coefficients cγ in Z[r±1, s±1] and J(α, β) is the set of all elements
λ ∈ P which are different from α⊕ β and gλαβ 6= 0.

2

Proposition 2.2. For any given α ∈ P, we have

〈α〉 = 〈α(a1)a1〉 · · · 〈α(am)am〉.

2

Now let us consider the divided powers of 〈a〉 by setting

〈a〉(t) =
1

[t]!ε(a)

〈a〉t

where [t]!ε(a) =
∏t

i=1
riε(a)−siε(a)
rε(a)−sε(a) .

Then we have the following lemma.

Lemma 2.1. Let a be a positive root and t ≥ 0 be an integer. Then
we have the following

〈ta〉 = 〈a〉(t).

2

For each positive root ai, let us define the following symbol

Xi = 〈ai〉.
Then we have the following proposition:

Proposition 2.3. Let α ∈ P and regard α as a map α : Φ+ −→ N0

with finite support. Let us set α(i) = α(ai), then we have the following

〈α〉 = X
(α(1))
1 · · ·X(α(m))

m = (
m∏
i=1

1

[α(i)]!ε(ai)
)X

α(1)
1 · · ·Xα(m)

m .

2
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Theorem 2.5. The monomials X
α(1)
1 · · ·Xα(m)

m with α(1), · · · , α(m) ∈
N0 form a Q(r, s)−basis of Hr,s(Λ); and for i < j, we have

XjXi = r〈dimXi,dimXj〉s−〈dimXj ,dimXi〉XiXj

+
∑
I(i,j)

c(ai+1, · · · , aj−1)X
ai+1

i+1 · · ·X
aj−1

j−1

with coefficients c(ai+1, · · · , aj−1) in Q(r, s). Here the index set I(i, j)
is the set of sequences (ai+1, · · · aj−1) of natural numbers such that∑j−1

t=i+1 atat = ai + aj.

2

Now we define some algebra automorphisms and skew derivations on
Hr,s(A∞). For any d ∈ Z⊕N, we define an algebra automorphism ld of
Hr,s(A∞) as follows

ld(w) = r<dimw,d>s−<d,dimw>w

where w is any homogeneous element of Hr,s(A∞).
Let Hj denote the Q(r, s)−subalgebra of Hr,s(A∞) generated by the

generators X1, · · · , Xj. Thus we have H0 = Q(r, s) and for any 0 ≤
j ≤ m, we have following

Hj = Hj−1[Xj, lj, δj]

with the automorphism lj and the lj−derivation δj of Hj−1. Note that
the automorphism lj can be explicitly defined as follows

lj(Xi) = r〈dimXi,dimXj〉s−〈dimXj ,dimXi〉Xi

for i < j. And the skew derivation δj can be defined as follows:

δj(Xi) = XjXi − lj(Xi)Xj =
∑
I(i,j)

c(ai+1, · · · , aj−1)X
ai+1

i+1 · · ·X
aj−1

j1
.

It is easy to check that we have the following result.

Proposition 2.4. The automorphism lj and the skew derivation δj
satisfy the following relation

ljδj = r〈aj ,aj〉s−〈aj ,aj〉δjlj.

2

Theorem 2.6. The two-parameter Ringel-Hall algebra Hr,s(A∞) can
be presented as an iterated skew polynomial ring.

2

Let R be a ring. Recall that a two-sided ideal P ⊂ R is said to be
prime if P 6= R and whenever the product AB of two two-sided ideals
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A,B of R is contained in P , then at least one of A and B is contained
in P . A two-sided ideal P ⊂ R is called completely prime if P 6= R
and whenever the product ab of two elements of R is contained in P ,
then at least one of the elements a and b is contained in P . In the
case of commutative rings, prime ideals are exactly completely prime
ideals. In the case of noncommutative rings, a completely prime ideal
is a prime ideal; but a prime ideal may not necessarily be a completely
prime ideal. We refer the reader to [2] for more details. Concerning
prime ideals of the algebra Hr,s(A∞), we have the following result.

Corollary 2.1. Suppose the multiplicative group generated by r, s is
torsion-free, then any prime ideal of Hr,s(A∞) is completely prime.

Proof: Let P ⊂ Hr,s(A∞) be a prime ideal of Hr,s(A∞). Since
Hr,s(A∞) = limn7→∞Hr,s(An), we have that P ∩ Hr,s(An) ⊂ Hr,s(An)
is a prime ideal of Hr,s(Λn) for any n ≥ 1. Let a, b ∈ Hr,s(A∞) such
that ab ∈ P . Then we can choose m ∈ N such that a, b, ab ∈ Hr,s(Am).
By the result in [33], we know that all prime ideals of Hr,s(Λm), (m ≥
1) are completely prime. Therefore, we have that a ∈ Hr,s(Am) or
b ∈ Hr,s(Am). Hence, the prime ideal P is a completely prime ideal of
Hr,s(A∞). 2

2.3. An algebra isomorphism from U+
r,s(sl∞) onto Hr,s(A∞). In

this subsection, we are going to establish a graded algebra isomor-
phism from the two-parameter quantized enveloping algebra U+

r,s(sl∞)
onto the two-parameter Ringel-Hall algebra Hr,s(A∞). Via this isomor-
phism, all results established in the previous subsection on Hr,s(A∞)
can be transformed to the two-parameter quantized enveloping algebra
U+
r,s(sl∞). Indeed, the isomorphism from U+

r,s(sl∞) onto Hr,s(A∞) is the
direct limit of the isomorphisms from U+

r,s(sln+1) onto Hr,s(An).
First of all, one can prove the following result, which induces a ho-

momorphism from U+
r,s(sl∞) into Hr,s(A∞).

Lemma 2.2. Let αi ∈ P correspond to the simple module Si, then we
have the following identities in Hr,s(Λ∞).

α2
iα

2
i+1 − (r + s)αiαi+1αi + rsαi+1α

2
i = 0,

αiα
2
i+1 − (r + s)αi+1αiαi+1 + rsαiα

2
i+1 = 0,

for i = 1, 2, 3, · · · .

Proof: Note that we can regard αi, αi+1 as elements of the two-
parameter Ringel-Hall algebra Hr,s(Ai+1), which is a subalgebra of
Hr,s(A∞). By the result in [33], we know that these identities hold
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in the algebra Hr,s(Ai+1). Therefore, we have proved the result as
desired. 2

Now we have the following result which relates Ringel-Hall Hr,s(A∞)
to the algebra U+

r,s(sl∞).

Theorem 2.7. The map

η : ei −→ αi

extends to a Q(r, s)−algebra isomorphism

η : U+
r,s(sl∞) −→ Hr,s(A∞).

Proof: (The proof is essentially borrowed from [24] and we include
it for completeness. See also [33]). First of all, note that the quantum
Serre relations of U+

r,s(sl∞) are preserved by the map η. Thus the
map η does defines an algebra homomorphism from the two-parameter
quantized enveloping algebra U+

r,s(sl∞) into the two-parameter twisted
Ringel-Hall algebra Hr,s(A∞). Now it suffices to show that the map η
is indeed a bijection.

We first show that the map η is surjective by verifying that the
algebra Hr,s(A∞) is generated by the elements ui which correspond to
the irreducible representation Si of the infinite quiver A∞. Let uα be
any element in Hr,s(A∞), then we can regard uα as an element of a
certain subalgebra Hr,s(An). Thus we can restrict our proof to the
subalgebra Hr,s(An). As a result, we have the following:

uα = (
m∏
i=1

1

[α(i)]!ε(ai)
)uα(a1)

a1
· · ·uα(am)

am .

Now we need to prove that uα is generated by ui for any α corre-
sponding to an indecomposable representations. We prove this claim
by using induction. Note that ζ(α, α) = 0, thus we have the following

uα = ud11 · · ·udnn −
∑

β 6=αdimβ=dimα

s〈β,β〉uβ.

However, one sees that the dimension of the module uβ is less than
the dimension of the module uα. Thus by induction on the dimension,
we can reduce to the case where dim(uα) = 1. In this case, the only
possibility is that uα = ui for some i. Thus we have proved the state-
ment that every uα is generated by ui, which further implies that the
map η is a surjective map. We also note that the map η is a graded
map.

Finally, we show that the map η is also injective. Recall that A =
Q[r, s](r−1,s−1) denote the localization of the polynomial ring Q[r, s] at
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the maximal ideal (r−1, s−1). Then we know that A = Q[r, s](r−1,s−1)

is a local ring with the residue field Q and the fractional field Q(r, s).
Let U+

A denote the free A−algebra generated by the generators ei
subject to the quantum Serre relations holding in U+

r,s(sl∞). Also let

U+
Q (sl∞) denote the universal enveloping algebra of the corresponding

nilpotent Lie subalgebra n+ of sl∞ defined over the base field Q. Then
we have the following

U+
r,s(sl∞) = Q(r, s)⊗A U+

A , U+
Q (sl∞) = Q⊗A U+

A .

For any β ∈ Z⊕N, we have the following result via Nakayama’s
Lemma

dimQU
+
Q (sl∞)β = dimQ(Q⊗A U+

A ))β

≥ dimQ(r,s)(Q(r, s)⊗A U+
A )β

= dimQ(r,s)U
+
r,s(sl∞)β

≥ dimQ(r,s)Hr,s(A∞)β.

Using Corollary 2 in the reference [28] and the PBW-theorem, we
also have the following result:

dimQU
+
Q (sl∞)β = dimQ(r,s)Hr,s(A∞)β.

Thus we have proved that the map η is injective. Therefore, the map
η is an algebra isomorphism from U+

r,s(sl∞) onto Hr,s(A∞) as desired.
2

2

Based on the previous theorem, the following corollary is in order.

Corollary 2.2. The algebra U+
r,s(sl∞) has a Q(r, s)−basis parameter-

ized by the isomorphism classes of all finite dimensional representations
of the infinite quiver A∞. In particular, we have

U+
r,s(sl∞) = lim

n7→∞
U+
r,s(sln+1).

2

Corollary 2.3. All prime ideals of U+
r,s(sl∞) are completely prime

under the condition that the multiplicative group generated by r, s is
torsion-free.

2
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3. The extended two-parameter Ringel-Hall algebras
Hr,s(A∞)

For the purpose of realizing the Borel subalgebra U≥0
r,s (sl∞) of the

two-parameter quantum group Ur,s(sl∞), we define the extended Ringel-

Hall algebra Hr,s(A∞) by adding the torus part. In particular, we show
that there is a Hopf algebra structure on this extended two-parameter
Ringel-Hall algebra Hr,s(A∞); as a result we prove that U≥0

r,s (sl∞) is iso-

morphic to the extended two-parameter Ringel-Hall algebra Hr,s(A∞)
as a Hopf algebra. Similarly, we can use an extended two-parameter
Ringel-Hall algebra to realize the Borel subalgebra U≤0(sl∞). There-
fore, we will obtain a PBW-basis of two-parameter quantum group
Ur,s(sl∞).

3.1. Extended Ringel-Hall algebras Hr,s(A∞). Let us defineHr,s(A∞)
to be a free Q(r, s)−module with the following basis

{kαuλ | α ∈ Z[I], λ ∈ P}.

Moreover one will define an algebra structure on the moduleHr,s(A∞)
as follows.

uαuβ =
∑
λ∈P

s−〈α,β〉F uλ
uα,uβ

(rs−1)uλ, for anyα, β ∈ P ,

kαuβ = r〈β,α〉s−〈α,β〉uβkα for any α ∈ Z[I], β ∈ P ,
kαkβ = kβkα for any α, β ∈ Z[I].

Indeed, we have the following

Proposition 3.1. For any elements x, y, z ∈ Z[I] and α, β, γ ∈ P, we
have the following

[(kxuα)(kyuβ)](kxuα) = (kxuα)[(kyuβ)(kzuγ)].

In particular, with the above defined multiplication, Hr,s(Λ∞) is an as-
sociative Q(r, s)−algebra.

Proof: Once we choose x, y, z, and α, β, γ, we can restrict to the
subgroup Hr,s(Am) of Hr,s(A∞) for some m. Since Hr,s(Am) is an
associative algebra with the restricted multiplication, thus we have
proved all the statements. 2

Furthermore, we have the following result.

Theorem 3.1. The map η extends to a Q(r, s)−algebra isomorphism

from U≥0
r,s (sl∞) onto Hr,s(Λ∞) via the map η(wi) = ki and η(ei) = uαi.
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Proof: The proof is straightforward. 2

As a result, we have the following description about a basis for the
algebra U+

r,s(sl∞)

Corollary 3.1. The set B+ = {wαη−1(uλ) | α ∈ Z[N], λ ∈ P} is a
Q(r, s)−basis of U≥0

r,s (sl∞).

2

3.2. A Hopf algebra structure on Hr,s(A∞). Now we are going
to introduce a Hopf algebra structure on the extended two-parameter
Ringel-Hall algebra Hr,s(A∞). In particular, we have the following
result.

Theorem 3.2. The algebra Hr,s(A∞) is a Hopf algebra with the Hopf
algebra structure defined as follows.

(1) Multiplication:

uαuβ =
∑
λ∈P

s−〈α,β〉gλαβuλ for any α, β ∈ B,

kαuβ = r〈β,α〉s−〈α,β〉uβkα for any α ∈ Z[I], β ∈ P ,
kαkβ = kβkα for any α, β ∈ Z[I].

(2) Comultiplication:

∆(uλ) =
∑
α,β∈P

r〈α,β〉
aαaβ
aλ

gλαβuαkβ ⊗ uβ for any λ ∈ P ,

∆(kα) = kα ⊗ kα for any α ∈ Z[I].

(3) Counit:

ε(uλ) = 0 for all λ 6= 0 and ε(kα) = 1 for any α ∈ P .
(4) Antipode:

σ(uλ) = δλ,0 +
∑
m≥1

(−1)m ×
∑

π∈P,λ1,λ2,··· ,λm∈P1

(rs−1)
∑
i<j〈λi,λj〉

aλ1 · · · aλm
aλ

gλλ1···λmg
π
λ1···λmk−λuπ

for any element λ ∈ P and

σ(kα) = k−α for any α ∈ Z[I].

In particular, we have the following

Hr,s(A∞) = lim
n 7→∞

Hr,s(An)

as a direct limit of Hopf subalgebras.
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2

The proof of the above theorem consists of a couple of lemmas which
can be proved as the finite dimensional case. And we refer the reader
to [33, 34] for more details. Namely, we have the following lemmas.

Lemma 3.1. The comultiplication ∆ is an algebra endomorphism of
Hr,s(A∞).

2

Lemma 3.2. For any λ ∈ P, we have the following

µ(σ ⊗ 1)∆(uλ) = δλ0

and

µ(1⊗ σ)∆(uλ) = δλ0.

2

3.3. A Hopf algebra isomorphism from U≥0
r,s (sl∞) onto Hr,s(A∞).

In this subsection, we will prove that the Borel subalgebras U≥0
r,s (sl∞)

and U≤0
r,s (sl∞) of the two-parameter quantum group Ur,s(sl∞) can be

realized as the extended two-parameter Ringel-Hall algebra Hr,s(A∞)

and Hs−1,r−1(A∞) as Hopf algebras. As a result, we shall derive a
PBW-basis for the two-parameter quantum group Ur,s(sl∞).

Theorem 3.3. We have that

U≥0
r,s (sl∞) ∼= Hr,s(A∞)

and

U≤0
r,s (sl∞) ∼= Hs−1,r−1(A∞)

as Hopf algebras.

2

Let B− denote the Q(r, s)−basis constructed for the algebra U≤0
r,s (sl∞)

via the Ringel-Hall algebra Hs−1,r−1(A∞), then we have the following:

Corollary 3.2. The set B+ × B− is a Q(r, s)−basis for the two-
parameter quantum groups Ur,s(sl∞).

2

Furthermore, we have the following result, which provides a bridge
from the finite dimensional case to the infinite case.
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Theorem 3.4. The two-parameter quantum group Ur,s(sl∞) is the di-
rect limit of the direct system {Ur,s(sln+1) | n ∈ N} of the Hopf subal-
gebras Ur,s(sln+1) of Ur,s(sl∞) . That is

Ur,s(sl∞) = lim
n7→∞

Ur,s(sln+1).

In particular, we have

U±1
r,s (sl∞) = lim

n7→∞
U±1
r,s (sln+1),

U0
r,s(sl∞) = lim

n7→∞
U0
r,s(sln+1),

U≥0
r,s (sl∞) = lim

n7→∞
U≥0
r,s (sln+1),

U≤0
r,s (sl∞) = lim

n7→∞
U≤0
r,s (sln+1).

Proof: It is obvious that Ur,s(sln+1) are Hopf subalgebras of Ur,s(sl∞)
and Ur,s(slm+1) for m ≥ n. In addition, any element of Ur,s(sl∞) is an
element of a certain Ur,s(sln+1). Thus we are done with the proof. 2

4. Monomial bases and bar-invariant bases of U+
r,s(sl∞)

In this section, we study various bases of U+
r,s(sl∞) via the theory of

generic extensions. Note that the construction of monomial bases using
generic extension theory for the Ringel-Hall algebras of type A,D,E
has been done in [9]. The idea of the construction is to use the monoidal
structure on the set M of isoclasses of finite dimensional representa-
tions of the corresponding quiver Q and the Bruhat-Chevalley type
partial ordering in M. Note that the arguments used in [9] can be
completely transformed to the case of sl∞. Therefore, we will state
most of the results for monomial bases without much detail. For the
details, we refer the reader to [9, 24].

For the reader’s convenience, we will recall the necessary details
about the the generic extensions from [9, 24]. Note that there ex-
ists a bijective correspondence between the set of positive roots Φ+ of
the root system Φ associated to sl∞ and the set of isoclasses of finite
dimensional indecomposable representations of A∞. For any β ∈ Φ+,
we will denote by M(β) = Mk(β) the corresponding indecomposable
representation of A∞. By the Krull–Remak-Schmidt theorem, we shall
have the following

M(λ) = Mk(λ) : =
⊕
β∈Φ+

λ(β)Mk(β)

for some function λ : Φ+ −→ N0 with a finite support. Therefore, the
isoclasses of finite dimensional representations of A∞ are indexed by
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the following set

Λ = {λ : Φ+ −→ Nwith a finite support} ∼= N⊕Φ+

0 .

From now on, we will use the set Λ to index the objects of the category
A∞−mod.

Next, we are going to recall some information about generic exten-
sions of representations of Dynkin quivers. We should mention that
all the arguments used in the finite dimensional cases of type A,D,E
can be transformed to the sl∞. We refer the interested reader to the
references [9, 24] for details.

Let us fix k to algebraically closed. Let us denote by Q = (Q0,Q1)

the quiver A∞. Fix a d = (di)i ∈ N⊕Φ+

0 and we may choose n large
enough so that d can be regarded as an element in Nn

0 . For any given
d, we can define an affine space as follows

R(d) = R(Q,d) : =
∏
α∈Q1

Homk(k
dt(α) , kdhα ) ∼=

∏
α∈Q1

kdtα×dhα .

Thus, a point x = (xα)α of R(d) determines a finite dimensional repre-
sentation V (x) ofQ = A∞. The algebraic groupGL(d) =

∏n
i=1 GLdi(k)

acts on the space R(d) by the conjugation

(gi)i . . . (xα)α = (gh(α))xαg
−1
t(α))α.

and the GL(d)−orbits Ox in R(d) correspond bijectively to the iso-
classes [V (x)] of finite dimensional representations of Q with the di-
mension vector d. The stabilizer GL(d)x = {g ∈ GL(d) | gx = x} of x
is the group of automorphisms of M : = V (x) which is zariski-open in
EndAn−mod(M) and has a dimension equal to the dimAn−mod(M). It
follows that the orbit OM : = Ox of M has a dimension

dimOM = dimGL(d)− dimEndAn−mod(M).

Now we have the following result, whose proof is the same as the one
in [24].

Lemma 4.1. For x ∈ R(d1) and any y ∈ R(d2), let E(Ox,Oy) be the
set of all z ∈ R(d) where d = d1 + d2 such that V (z) is an extension
of some M ∈ Ox by some N ∈ Oy. Then E(Ox,Oy) is irreducible.

2

Given any two finite-dimensional representations of M,N of the in-
finite linear quiver A∞, let us consider the extensions

0 −→ N −→ L −→M −→ 0
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of M by N . By the lemma, there is a unique (up to isomorphism) such
extension G with dimOG being maximal. We call G the generic exten-
sion of M by N , and denoted by M ∗N . For any two representations
M,N , we say M degenerates to N , or that N is a degeneration of M ,
and write [N ] ≤ [M ] (or simply N ≤ M) if ON ⊆ OM which is the
closure of OM . Note that N < M if and only if ON ⊂ OM\OM .

Similar to the result in [9, 24], one knows that the relation ≤ is
independent of the base field k and it provides a partial order on the
set Λ via setting λ ≤ µ if and only if Mk(λ) ≤ Mk(µ) for any given
algebraically closed field k.

Using the same arguments as in [9, 24], we shall have the following
result.

Theorem 4.1. (1). If 0 −→ N −→ E −→ M −→ 0 is exact and
non-split, then M ⊕N < E.
(2). Let M,N,X be finite dimensional representations of the quiver
A∞. Then X ≤ M ∗ N if and only if there exit M ′ ≤ M,N ′ ≤ N
such that X is an extension of M ′ by N ′. In particular, we have M ′ ≤
M,N ′ ≤ N =⇒M ′ ∗N ′ ≤M ∗N .
(3). LetM be the set of isoclasses of finite dimensional representations
of A∞ and define a multiplication ∗ on M by [M ] ∗ [N ] = [M ∗N ] for
any [M ], [N ] ∈M. Then M is a monoid with identity 1 = [0] and the
multiplication ∗ preserves the induced partial ordering on M.
(4). M is generated by irreducible representations [Si], i ∈ I subject to
the following relations

(1) [Ei] ∗ [Ej] = [Ej][Ei] if i, j are not connected by an arrow,
(2) [Ei] ∗ [Ej] ∗ [Ei] = [Ei] ∗ [Ei] ∗ [Ej] and [Ej] ∗ [Ei] ∗ [Ej] =

[Ei] ∗ [Ej] ∗ [Ej] if there exists an arrow from i to j.

2

In addition, let us denote by U+
q the Q[q]−algebra generated by

Ei, i ∈ I subject to the relations

(1) EiEj = EjEi if i, j are not connected by an arrow,
(2) E2

iEj− (q+1)EiEjEi+qEjE
2
i = 0 and EiE

2
j − (q+1)EjEiEj +

qE2
jEi = 0 if there exists an arrow from i to j.

Let Hq(A∞) denote by the generic Ringel-Hall algebra defined over Q[q]
associated to the infinite quiver A∞.

Adopting the same argument in [24], we shall further have the fol-
lowing result.

Theorem 4.2. The following algebras are isomorphic.

(1) The monoid ring M.
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(2) The Q−algebra with generators i ∈ I and relations
(a) ij = ji if i and j are connected by arrow,
(b) iji = iij and jij = ijj if there is an arrow from i to j.

(3) The specialization U+
0 of U+

q to q = 0.
(4) The specialization H0(A∞) of Hq(A∞) to q = 0.

2

Let us denote by Ω the set of all words formed by letters in I. It is
easy to see that for any given word w = w1 · · ·wm ∈ Ω, we can set the
following finite dimensional representations of A∞

M(w) = Sw1 ∗ Sw2 ∗ · · · ∗ Swm .

Note that there is a unique M(p(w)) ∈ A∞−mod such that M(w) ∼=
M(p(w)), which enables us to define a function as follows

p : Ω −→ A∞ −mod,w 7→M(p(w)).

Furthermore, we shall have the following result on this function.

Theorem 4.3. The map p induces a surjection

p : Ω −→ A∞ −mod.

Proof: Once again, we can restrict the function to a certain subcat-
egory Am−mod, where the property holds. 2

Therefore, p induces a partition of the set Ω = ∪λ∈ΛΩλ with Ωλ =
p−(λ). We will call each Ωλ a fiber of the map p.

Now we are going to recall some information on the partial ordering
≤. Let w = i1 · · · im be a word in Ω. Then w can be uniquely expressed
in the tight form w = je11 · · · jett where er ≥ 1, 1 ≤ r ≤ t, and jr 6= jr+1

for 1 ≤ r ≤ t− 1. A filtration

0 = Mt ⊂Mt−1 ⊂ · · ·M1 ⊂M0 = M

of a module M is called a reduced filtration of type w if Mr−1/Mr
∼=

erSr, for all 1 ≤ r ≤ t. Note that any reduced filtration of M of
type w can be refined to a composition of M of type w. Conversely,
given a composition series of M , there is a unique reduced filtration
of M . Let us denote by ϕλw(x) the Hall polynomial ϕλµ1···µt(x) where

M(µr) = erSr. Let us denote by γλw(qk) the number of the reduced
filtrations of Mk(λ) over the base field k when k is a finite field. A word

w is called distinguished if γ
p(w)
w = 1. Note that w is distinguished if

and only if, for some algebraically closed field k, Mk(p(w)) has a unique
reduced filtration of type w. Similar to [9], we have the following
results.
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Lemma 4.2. (See also Lemma 4.1 in [9]) Let ω ∈ Ω and µ ≥ λ in
Λ. Then ϕµω 6= 0 implies ϕλω 6= 0.

2

Theorem 4.4. (See also Theorem 4.2 in [9]) Let λ, µ ∈ Λ. Then
λ ≤ µ if and only if there exists a word ω ∈ p−1(µ) such that ϕλµ 6= 0.

2

Lemma 4.3. (See also Lemma 5.2 in [9]) Every fiber of p contains
a distinguished word.

2

Let us define [[ea]]
! = [[1]] · · · [[ea]] with [[m]] = 1−(rs−1)m

1−rs−1 . Then we
shall have the following result.

Lemma 4.4. (See also Lemma 6.1 in [9]) Let w ∈ Ω be a word with
the tight form je11 · · · jett . Then, for each λ ∈ Λ,

ϕλw(rs−1) = γλw(rs−1)
t∏

r=1

[[er]]
!.

In particular, ϕ
p(w)
w =

∏t
r=1[[er]]

! if w is distinguished.

2

For any given word w = i1 · · · cm ∈ Ω, we can associate a monomial

uw = ui1 · · ·uim ∈ Hr,s(A∞).

Proposition 4.1. For any w ∈ Ω with the tight form jr11 · · · jett , we
have

uw =
∑

λ≤p(w)

ϕλw(rs−1)uλ =
t∏

r=1

[[er]]
!
∑

λ≤p(w)

γλw(rs−1)uλ.

Moreover, the coefficients appearing in the sum are all nonzero.

2

As a result, we shall have the following theorem.

Theorem 4.5. For each given λ ∈ Λ, let us choose an arbitrary word
wλ ∈ p−1(w). Then the set {uwλ | λ ∈ Λ} is a Q(r, s)−basis of
Hr,s(A∞). Moreover, if all the words are chosen to be distinguished,
then this set is a Z[r, s](r−1,s−1)−basis of Hr,s(A∞)Z[r,s](r−1,s−1)

.

2
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4.1. A bar-invariant basis of U+
r,s(sl∞). It is easy to see that the

algebra U+
r,s(sl∞) admits a Q−linear involution defined as follows

r = s, s = r, ei = ei for all i ∈ I.

And we will refer this involution as the bar-involution. In this subsec-
tion, we will construct a bar-invariant basis for U+

r,s(sl∞).

Denote by [M,N ] = dimkHom(M,N) and [M,N ]1 = dimkExt
1(M,N).

Let us set cXM,N = s[X,X]−[M,N ]+[M,N ]1−[M,M ]−[N,N ]FX
M,N(rs−1). It is ob-

vious that the same proof in [24] shall yield the following result.

Proposition 4.2. Let us write uα =
∑

β ω
α
βuβ, then we have

(1) ωαβ = 0 unless β ≤ α, and ωαα = 1,
(2) if uα = M⊕N for finite dimensional representations M,N with

[N,M ] = 0 = [M,N ]1, then

ωαβ =
∑

M ′≤M,N ′≤N

ωMM ′ω
N
N ′c

α
M ′N ′ ,

(3) if uα is an exponent of a finite dimensional indecomposable rep-
resentation, then

ωαβ = s[uβ ,uβ ]1 −
∑

β≤γ<α

r[uγ ,uγ ]1ωγβ ,

(4) ωαβ ∈ s[uβ ,uβ ]−[uα,uα]Z[rs−1].

2

Furthermore, using the arguments in [21, 24], we shall have the fol-
lowing result on a bar-invariant basis of the algebra U+

r,s(sl∞).

Theorem 4.6. For each isoclass α, there exists a unique element

Cα ∈ uα + s−1Z[rs, r−1s−1, s][B\{uα})

such that Cα = Cα. Write Cα =
∑

β ζ
α
β uβ, we have

(1) ζαβ = 0 unless β ≤ α, and ζαα = 1,

(2) ζαβ ∈ s[uβ ,uβ ]−[uα,uα]Z[rs−1],

(3) Denote by ζ̂αβ (v) ∈ Z[v, v−1] the specialization of ζαβ to α = v =

s−1, we have

ζαβ = (
√
rs)[uβ ,uβ ]−[uα,uα]ζ̂XY (

√
rs−1).

2

Acknowledgement: The author would like to thank Sarah With-
erspoon for some helpful discussions about this work.



TWO-PARAMETER QUANTUM GROUPS 27

References

[1] Artin, M., Schelter, W. and Tate, J., Quantum deformations of GLn,
Comm. Pure Appl. Math. 44 (1991), 879–895.

[2] Brown, K. A. and Goodearl, K. R., “Lectures on algebraic quan-
tum groups,” Advanced Courses in Mathematics, CRM Barcelona,
Birkhauser Verlag, Basel, 2002. x+348 pp. ISBN: 3-7643-6714-8.

[3] Bergeron, N., Gao, Y. and Hu, N. H., Drinfeld doubles and Lusztig’s
symmetries of two-parameter quantum groups, J. Algebra 301 (2006),
no. 1, 378–405.

[4] Benkart, G., Kang S. J. and Lee K. H., On the center of two-parameter
quantum groups, Roy. Soc. Edingburg Sect. A 136(3) (2006), 445–472.

[5] Benkart, G. and Witherspoon, S., Two-parameter quantum groups and
Drinfeld doubles, Algebr. Represent. Theory 7 (2004), 261–286.

[6] Benkart, G. and Witherspoon, S., Representations of two-parameter
quantum groups and Schur-Weyl duality, Hopf algebras, “Lecture Notes
in Pure and Appl. Math.” 237, pp. 65-92, Dekker, New York, 2004.

[7] Benkart, G. and Witherspoon, S., Restricted two-parameter quantum
groups, “Representations of finite dimensional algebras and related top-
ics in Lie theory and geometry,” 293–318, Fields Inst. Commun. 40,
Amer. Math. Soc., Providence, RI, 2004.

[8] Chin, W. and Musson, I. M., Multiparameter quantum enveloping al-
gebras, J. Pure Appl. Algebra 107 (1996), 171–191.

[9] Deng, B. M. and Du, J., Bases of quantized enveloping algebras,Pacic
J. Math. 220 (2005) 33–48.

[10] Du, J. and Fu, Q., Quantum gl∞, infinite q-Schur algebras and their
representations, J. Algebra 322, no. 5(2009), 1516–1547.

[11] Dobrev, V. K. and Parashar, P., Duality for multiparametric quantum
GL(n), J. Phys. A: Math. Gen. 26 (1993), 6991–7002.

[12] Doi, Y. and Takeuchi, M., Multiplication alteration by two-cocycles-the
quantum version, Comm. Algebra 22 (1994), 5715–5732.

[13] Drinfeld, V., Hopf algebras and the Yang-Baxter equations, Soviet.
Math. Dokl. 32 (1985), 254–258.

[14] Hou, R. C. and Ye, Y., Ringel-Hall algebra of A∞−type, Journal of
University of Science and Technology of China, Vol. 36, No. 6 (2006),
712–719.

[15] Green, J. A. Hall algebras, hereditary algebras and quantum groups,
Invent. Math. 120 (1995), 361–377.

[16] Jing, N. H., Quantum groups with two parameters, In “Deforma-
tion Theory and Quantum Groups with Applications to Mathemati-
cal Physics (Amherst, MA, 1990)”, Contemp. Math. 134, Amer. Math.
Soc., Providence, 1992, pp. 129–138.

[17] Kac, V. G., Infinite-Dimensional Lie Algebras (third ed.), Cambridge
University Press, Cambridge (1990).

[18] Kulish, P. P., A two-parameter quantum group and gauge transforma-
tions, Zap. Nauch. Semin. LOMI 180 (1990), 89–93 (in Russian).

[19] Levendorskii, S. and Soibelman, Y., Quantum group A∞, Comm. Math.
Phys.140 No. 2 (1991), 399–414



28 X. TANG

[20] Lusztig, G., “Introduction to quantum groups”, Birkhauuser Boston,
1993.

[21] Lusztig, G., Canonical bases arising from quantized enveloping algebras,
J. Amer. Math. Soc. 3 (1990), 447–498.

[22] Palev, T. D. and Stoilova, N. I., Highest weight representations of the
quantum algebra Uh(gl∞), J. Phys.A 30 (1997) L699–L705.

[23] Palev, T. D. and Stoilova, N. I., Highest weight irreducible representa-
tions of the quantum algebra Uh(A∞), J. Math. Phys. 39 (1998) 5832–
5849.

[24] Reineke, M., Generic extensions and multiplicative bases of quantum
groups at q = 0, Represent. Theory 5 (2001), 147–163 (electronic).

[25] Reshetikhin, N., Multiparameter quantum groups and twisted quasitri-
angular Hopf algebras, Lett. Math. Phys. 20 (1990), pp. 331–335.

[26] Ringel, C., Hall algebras and quantum groups, Invent. Math. 101
(1990), 583–591.

[27] Ringel, C., PBW-bases of quantum groups, J. Reine Angew. Math. 470
(1996), 51–88.

[28] Ringel, C., Hall algebras revisited, “Quantum deformations of alge-
bras and their representations (Ramat-Gan, 1991-1992; Rehovot, 1991-
1992)”, 171–176, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat
Gan, 1993.

[29] Ringel, C., Hall polynomials for the representation-finite hereditary al-
gebras, Adv. Math. 84 (1990), 137–178.

[30] Ringel, C., Hall Algebras, in “Topics in Algebra”, Banach Center Publ.
26 (1990), 433–447.

[31] Sudbery, A., Consistent multi-parameter quantization of GL(n), J.
Phys. A: Math. Gen. (1990), L697–L704.

[32] Takeuchi, M., A two-parameter quantization of GL(n), Proc. Japan,
Acad. 66 Ser A (1990), 112–114.

[33] Tang, X., Ringel-Hall algebras and two-parameter quantized enveloping
algebras, Pacific J. Math.247 no. 1 (2010), 213–240.

[34] Xiao, J., Drinfeld double and Ringel-Green theory of Hall algebras, J.
Algebra 190 (1997), no. 1, 100–144.

Department of Mathematics & Computer Science, Fayetteville State
University, 1200 Murchison Road, Fayetteville, NC 28301

E-mail address: xtang@uncfsu.edu


	Xin Tang's research paper on two-parameter quantum groups and Ringel-Hall algebras of infinite type
	Recommended Citation

	Introduction
	1. Definition and basic properties of the two-parameter quantum groups Ur,s(sl)
	1.1. A Drinfeld double realization of Ur,s(sl)
	1.2. An integral form of the two-parameter quantum group Ur,s(sl)

	2. Two-parameter Ringel-Hall algebras Hr,s(A)
	2.1. Two-parameter Ringel-Hall algebra Hr,s(A)
	2.2. Basic properties of Hr,s(A)
	2.3. An algebra isomorphism from Ur,s+(sl) onto Hr,s(A)

	3. The extended two-parameter Ringel-Hall algebras Hr,s(A)
	3.1. Extended Ringel-Hall algebras Hr,s(A)
	3.2. A Hopf algebra structure on Hr,s(A)
	3.3. A Hopf algebra isomorphism from Ur,s0(sl) onto Hr,s(A)

	4. Monomial bases and bar-invariant bases of Ur,s+(sl)
	4.1. A bar-invariant basis of U+r,s(sl)

	References

