Thermal Effects in Kinetics of Phase Transformations
Document Type
Book
Publication Date
1-1-2023
Abstract
All stages of phase transformations are subjected to thermal effects, which stem from the necessity to redistribute internal energy in the material that undergoes the transformation. Consider solidification of a homogeneous one-component liquid; think of water changing to ice or molten metal turning in solid. To be crystallized, the atoms of liquid must be incorporated into the crystal, and the released latent heat must be transported away from the interface between the phases. The thermal effects may change the dynamical course of the transformation and even its outcome. Some of the effects are caused by the variation of material properties as a result of temperature gradients that develop during phase transformations, e.g., thermal stress due to thermal expansion. These effects are not considered in this book. Instead, we concentrate on the thermal effects related to the latent heat release and redistribution. In this Chapter they will be analyzed in the framework of a free-boundary (Stefan) problem. The Stefan problem has a special place in the theory of phase transformations because it was the first significant, mathematically rigorous, and physically realistic problem resolved exactly. The Stefan problem belongs to a class of so-called free-boundary problems, the essential new feature of which is existence of a phase-separating interface whose motion must be determined.
Recommended Citation
Umantsev, Alexander, "Thermal Effects in Kinetics of Phase Transformations" (2023). College of Health, Science, and Technology. 313.
https://digitalcommons.uncfsu.edu/college_health_science_technology/313